Авторазбор

Разборка грузовиков Мерседес–Бенц (Mercedes-Benz)

Содержание

Лейденская банка или как сделать простой конденсатор

Здравствуйте. Хотелось бы показать, как делается лейденская банка или самый простой конденсатор.
Но для начала немного информации для тех, кто не знает, что это такое ну а те, кто в курсе может и пропустить или почитать, дабы освежить память.
Лейденская банка — первый электрический конденсатор, изобретённый голландским учёным Питером Ван Мушенбруком и его учеником Кюнеусом в 1745 в Лейдене. Параллельно и независимо от них сходный аппарат под названием «медицинская банка» изобрёл немецкий учёный Эвальд Юрген фон Клейст.
Этот старинный прибор, может накапливать статическое электричество, чем меня и привлек.

Состоит он из емкости (банки) обернутой фольгой с внешней стороны и внутренней обклеенной собственно той же фольгой на две трети высоты, они и будут обкладками нашего конденсатора, а емкость (кстати, не должен пропускать электричество) будет диэлектриком между ними.

Из инструментов мне понадобились:
1) Ножницы.
2) Шило.
3) Плоскогубцы.
4) Паяльник.
Из материалов:
1)Емкость.
2)Фольга.
3)Кусочек медного провода.
4)Скотч.
5)Шарик от подшипника.

И так. За основу я взял емкость от закончившейся холодной сварки. Поначалу хотел из стеклянной баночки, но они все были толстостенные и большие.

Отрезал кусочек фольги для донышка, (чтобы увеличить полезную площадь и благодаря этому повысить производительность).

Следом я обернул фольгой снаружи стенку своей емкости, старался, чтобы фольга как можно плотнее прилегала к ней, ведь это тоже влияет на то, сколько она заряда будет накапливать.

Кстати в первой лейденской банке эту фольгу успешно заменила рука ученого Мусхенбрук (Мушенбрек) (1692—1761 гг.), обхватывавшего сосуд и понявшего, что лучше не стоило трогать провод, который был соединен к электростатической машине зарядившей лейденскую банку.
Поискав в закромах, нашел шарик от подшипника, жаль, конечно, что не нашлось большего диаметра, но он тоже неплохо собирает статическое электричество.

Решил закрепить посредством пайки. Для начала зачистил место пайки наждачной бумагой.

Затем полудил канифолью и спаял медную проволоку с шариком.

Дальше просто проткнул шилом крышку емкости и засунул туда провод с шариком.

На нижней фотографии видно цепочку, которую я ставил для контакта с внутренней обкладкой, но впоследствии отказавшись от фольги (ввиду отсутствия клея или фольгоскотча), которая внутри и заменив фольгу водой, она была демонтирована.

А вот и он в укомплектованном виде.

Электростатической машины чтобы проверить, у меня пока нет.
Пришлось заряжать его при помощи телевизора (зомбоящика). Поелозив два-три раза по экрану шариком, насобирал достаточное количество электрических зарядов для разряда искры.

А бьет, я вам скажу не хило, сильнее, чем пьезоэлемент зажигалки.
Не хотел я, конечно же, повторять опыт Питера Ван Мушенбрука но пришлось ввиду своей неаккуратности и легко отвлекаемости.

Источник (Source)

Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Лейденская банка своими руками

Простейшую лейденскую банку можно сделать из бросовых материалов своими руками, а в качестве материала будут выступать алюминиевые банки из под напитков. На видео экспериментально показано, что мощности устройства достаточно для воспламенения горючей жидкости.

В данной публикации показан способ изготовления высоковольтного конденсатора из двух банок из под Колы. Одна баночка нужна на 330 миллилитров, вторая на 250. Также нужен скотч и канцелярский нож.

Берем банку с большим объемом и срезаем с нее горловину. Края выровняем нехитрым способом. Скотчем обмотаем вторую банку. Таким образом будет создана изоляция. Из верха первой баночки возьмем ушко для открывания и закрепим ее на ней же. Заново обмотаем все скотчем. Конденсатор для аккумулирования статического электричества готов. Зарядить его можно при помощи расчески и шерсти.

После зарядки самодельной лейденской банки можно разряжать и наблюдать эффекты, в том числе и воспламенение спирта. Опыты с данным устройством могут продемонстрировать пожароопасность статического электричества, поэтому могут быть полезны для наглядного представления физических его физических свойств.


обсуждение

Артем мингалеев
это вызывает у меня большое сомнение! Я конечно понимаю, можно сделать кучу таких банок, но гораздо компактнее будет такая же огромная емкость по современным технологиям размером с комнату! И то любой прибор даже минуты не проработает, напряжение на конденсаторе быстро упадет ниже нормы, и придется опять целые сутки заряжать этот конденсатор от статического электричества!

Дмитрий морозов
рулон скотча, и фольгу пищевую все склеить и внутрь. Коту на лапу провод подсоединить к аноду. Зарядка: кот на резиновом ковре на руках пакеты, активно растираем зверюгу об окончании заряда будет свидетельствовать не только равномерно торчащая шерсть, усы, главная индикация хвост (руками не сгибается). Будьте осторожны при отсоединении зарядного устройства! Очень высокое напряжение электрическое и психическое кошачье. В таком варианте это шокер.

3d-format
+дмитрий морозов а можно альтернативный высоковольтный генератор.: -) с пол ста таких банок, 2 обруча оргстекло для каркаса колеса, пара подшипников, собираем колесо из банок обручей стекла и подшипников, банки располагаем по диаметру колеса, внешний слой банок конденсаторов не изолируем, устанавливаем на крепление, садим в колесо белку или другую лохматую породу с большой скоростью бега, электро энергию с банок снимаем щётками через воздушный зазор 1мм с контактов банок конденсаторов. Альтернативный генератор готов к работе, высоковольтные импульсы проводами подаем на понижающий трансформатор.

Vadim ivanov
+михаил фельдман иначе не интересно. Открыл человек, в 30 с лишним лет например, лейденскую банку в банке из под колы и сразу почувствовал прилив сил и дикое желание изобрести ещё какое-нибудь хау-ноу. Так, глядишь, годам к шестидесяти, в школу походить захочется если вспомнит -за чем?.

Вселенский разум
в лейденской банке был электролит. А как конденсатор эта алюминиевая конструкция работать не будет площади мало. Я думаю это сделано специально дабы сбить искателей энергии с толку, так сказать дезинформация.

Михаил фельдман
+виталий ковалёв виталя, включи извилины: за последнюю сотню лет много миллиардов вложено в разработку батарей и аккумуляторов перепробованы миллионы вариантов. Причем этим занимаются специалисты. А тут полуграмотный мужик берет консервную банку и изготавливает из нее что-то дельное? Не верю.

artspirit9
+геннадий так называемое “статическое” электричество, и есть обычное электричество, особенностью которого в бытовых условиях, является высокое напряжение с низкой ёмкостью заряда, а следовательно микроскопическая сила тока при нагрузке. Условно говоря пикофарады с высоким напряжением, а для питания техники, в основном используются микрофарады с низким напряжением. И как заметил верно сергей, после зарядки конденсатора, уже не “статика”. И может быть трансформирован для зарядки того же аккумулятора.

Ya moya
школота нынче не та. Эх, не та и школа. Я учился в средней образовательной школе, и знаю разницу между “статическим” электричеством, и прочими. А также отличие киловольт от микрофарад. Еще я знаю слово “чушь”, её здесь много.

Artspirit9
особенность школотыв том, что она может становиться бородатой, ограничивать себя школьной программой, отбрасывать логику, аргументацию и не обременяя себя мозговыми потугами, оперировать словами: бред, чушь и т.д.
Очевидно некоторые думают, что есть прочие электричества, а у атомов имеются разные электроны. Забавно.

Artspirit9
+александр нестеров наверно о факте проницаемости воздушной среды при средней влажности 45%, а не ионизированного воздуха за счёт скопления электрического потенциала на острие носителя заряда. Молния тоже не сразу пробивает зазор между потенциалами, а предварительно формирует ионизированный канал.

Луч света
человек из мусора сделал вещь, на первый взгляд бесполезную, но очень поучительную! Во первых дело не в этой безделушке, а в идее. Если кто либо задумывался о получении электричества из ничего, точнее от окружающей среды, тому будет интересно увидеть сколько количества электричества накапливает объем всего с баночку coca cola. Если взять батарею из таких или более усовершенствованных конденсаторов, можно получить большую энергию, которую можно накапливать из окружающей среды, к примеру от атмосферы с возможностью ее практического применения. После несложного преобразования можно сделать зарядку для аккумулятора, от последнего область применения последствий этого эксперимента безгранична.

Игорь афанасьев
если ты возьмёшь кошака одной рукой за передние лапы, а другой за задние и повозишь спиной кошака по ламинату в своей хате или по линолеуму, то, уверяю тебя, этим кошаком можно будет отбиваться от всяких нехороших лихих людей. Которые проникнут в твою недвижимую собственность, которой является твоя хата. Просто резко прикасаешься кошаком к личности неприятеля, отчего он падает замертво (больше, конечно, от неожиданности) на пол. В этот момент ты можешь добавить от себя мощнейшим ударом ноги по почкам неприятеля и он на некоторое время будет выведен из жизненного пространства. Это всё зависит от мощности удара. Желательно иметь ногу с тяжёлым башмаком не меньше 46 размера. Так будет надёжней.

lexor
лучше взять пластиковую бутылку, причем желательно поискать ту, у которой стенки потоньше, чем больше объем бутылки – тем больше емкость, следовательно более мощный заряд накопит конденсатор. Плотно обмотать бутылку алюминиевой фольгой, не доходя несколько сантиметров до горлышка, поверх фольги можно скотч для прочности. Внутрь тоже побольше фольги, но что бы кусочек выходил наружу. Залить бутылку крепко соленой водой. Это будет более серьезный конденсатор. Напряжение пробоя стенок бутылки очень высокое, заряжая от расчески точно такого не достичь, а вода уменьшит расстояние между обкладками конденсатора до толщины этих стенок. А как известно емкость прямо пропорциональна площади обкладок и обратно пропорциональна расстоянию между ними. А в видео расстояние далеко не оптимальное.

Лейденская банка — Техножук

Для изготовления лейденских банок могут быть взяты любые стеклянные банки из-под консервированных фруктов, широкогорлые бутылки или просто чайные стаканы. Емкость конденсатора — лейденской банки зависит от ее объема. По­этому для того, чтобы накопить больше электричества, надо делать больше и лейденскую банку. Самыми подходящими для этого будут стеклянные банки из-под консервов емкостью в 0,5 или 1 литр. Нам нужно взять четыре одинаковых банки.
Все банки на 3/4 их высоты необходимо оклеить станиолем— оловянной фольгой, употребляемой для обертки чая, шоко­лада и других продуктов. Также оклеиваются банки и изнутри. Необходимо заклеить станиолем с обеих сторон дно банки. При этом надо следить, чтобы на станиоле не получалось складок и разрывов. Если же где-нибудь будут небольшие дырочки, их заклеивают кружочками станиоля. Приклеивать станиоль можно конторским клеем. Можно обойтись и без внутренней обклейки банки, а просто насыпать немного в банку мелко настриженной фольги и спустить в нее прием­ник из проволоки.
Приемник для лейденской банки можно изготовить различ­ными способами. Приемник — это металлический стержень с шариком или петлей на конце, служащий для соединения внутренней обкладки банки с кондуктором электрической машины. Укрепить его в банке можно путем широкого кольца, сделанного на противоположном конце стержня. Кольцо это должно плотно входить в банку до самого дна. Можно также свить спираль по внутреннему диаметру банки. Если для банки будет использована бутылка с широким горлом, то стержень укрепляется в пробке, которой закрывается бу­тылка. Стержень должен доходить до дна банки и плотно прижиматься к станиолю. Чтобы не поцарапать и не про­рвать внутреннюю обкладку банки, на конце стержня также надо сделать маленькое колечко, могущее пройти через горло бутылки. Если горло бутылки не позволит вам оклеить ее внутренность, то внутреннюю обкладку банки заменит налитая в нее вода с небольшим добавлением соли. Уровень воды должен соответствовать уровню внешней обкладки. Можно в бутылку насыпать дроби до такого же уровня.

Для изготовления лейденских банок могут быть взяты любые стеклянные банки из-под консервированных фруктов, широкогорлые бутылки или просто чайные стаканы. Емкость конденсатора — лейденской банки зависит от ее объема. По­этому для того, чтобы накопить больше электричества, надо делать больше и лейденскую банку. Самыми подходящими для этого будут стеклянные банки из-под консервов емкостью в 0,5 или 1 литр. Нам нужно взять четыре одинаковых банки.
Все банки на 3/4 их высоты необходимо оклеить станиолем— оловянной фольгой, употребляемой для обертки чая, шоко­лада и других продуктов. Также оклеиваются банки и изнутри. Необходимо заклеить станиолем с обеих сторон дно банки. При этом надо следить, чтобы на станиоле не получалось складок и разрывов. Если же где-нибудь будут небольшие дырочки, их заклеивают кружочками станиоля. Приклеивать станиоль можно конторским клеем. Можно обойтись и без внутренней обклейки банки, а просто насыпать немного в банку мелко настриженной фольги и спустить в нее прием­ник из проволоки.
Приемник для лейденской банки можно изготовить различ­ными способами. Приемник — это металлический стержень с шариком или петлей на конце, служащий для соединения внутренней обкладки банки с кондуктором электрической машины. Укрепить его в банке можно путем широкого кольца, сделанного на противоположном конце стержня. Кольцо это должно плотно входить в банку до самого дна. Можно также свить спираль по внутреннему диаметру банки. Если для банки будет использована бутылка с широким горлом, то стержень укрепляется в пробке, которой закрывается бу­тылка. Стержень должен доходить до дна банки и плотно прижиматься к станиолю. Чтобы не поцарапать и не про­рвать внутреннюю обкладку банки, на конце стержня также надо сделать маленькое колечко, могущее пройти через горло бутылки. Если горло бутылки не позволит вам оклеить ее внутренность, то внутреннюю обкладку банки заменит налитая в нее вода с небольшим добавлением соли. Уровень воды должен соответствовать уровню внешней обкладки. Можно в бутылку насыпать дроби до такого же уровня.
Батарея из лейденских банок изготовляется просто. Все приемники банок соединяются между собой голым медным проводом, а банки устанавливаются на доску, оклеенную ста­ниолем. Такая батарея будет накапливать электричества в четыре раза больше, чем одна банка. Изготовление лейденских банок и батареи из них показано на рис. 5 а и б.

 

Рис. 5. Лейденские банки и их соединение в батареи.
а—лейденские банки, б— батарея из лейденских банок, в—разрядник.

Лейденская банка. Виды и устройство. Работа и применение

Лейденская банка – это первый в своем роде электрический конденсатор, который появился на свет благодаря стараниям немецких и голландских ученых. В 1745 году подобную банку смастерил Эвальд Георг фон Клейст. Через год подобное устройство, но с некоторыми отличиями, создали в Лейденском университете. Этим устройством заинтересовался аббат Нолле из Франции, который продемонстрировал его королю. Именно благодаря демонстрации первая конструкция электрического конденсатора получила название банка из Лейдена.

До изобретения этой банки ученые вырабатывали электричество с помощью диэлектриков в виде стекла или янтаря, а также электростатических генераторов. Клейст решил провести эксперимент, зарядив электрическим зарядом воду в банке посредством штыря из железа. В то же время банка находилась на металлической тарелке. Проведя опыты, он понял, что в банке конденсируется электрический ток.

Виды

Лейденская банка почти всегда имела одно и то же строение. Однако конструкция банки с течением времени усовершенствовалась:
  • Изначально вода в ней была заменена на дробь.
  • Затем в качестве наружной поверхности стали использоваться тонкие пластины из свинца.
  • В последующем вместо пластин из свинца стали применяться листы из оловянной фольги.

Одним из вариантов устройства была батарейка лейденских бутылок, которые имели проводящую жидкость. В них были вставлены стержневые выводы, которые соединялись между собой. Сосуды соединяются с помощью общего вывода, вследствие чего получался большой конденсатор. Это устройство было изобретено Павлом Николаевичем Яблочковым. Указанные блоки можно было соединять последовательно либо параллельно. Конструкция в виде блоков в итоге получила довольно обширное применение в различных отраслях промышленности.

Устройство

Это сосуд из стекла, внутри и снаружи покрытый фольгированным листом. Посредством пробки из резины в сосуд вставляется стержень из металла таким образом, что он касается фольги, расположенной внутри банки. В результате листы фольги, расположенные внутри и снаружи, играют роль электродов при подсоединении их к наружному источнику электроэнергии. Для этого может быть использована батарейка, какой-нибудь аккумулятор, либо палка из эбонита, которую заранее потерли о мех.

Лейденская банка напоминала закрутку. Сверху накручивалась крышка из металла, которая входила в электрод. Через некоторое время банки объединялись с батареями, после чего их помещали в один ящик.

Эти устройства применялись порядка 150 лет. Так как везде был распространен постоянный ток, то не было необходимости изобретать что-то еще. Поэтому в основном довольствовались банками, чтобы обеспечить работу применявшихся в то время телеграфов.

Принцип действия

Лейденская банка имеет принцип действия, свойственный обычному электрическому конденсатору. Основное достоинство банки перед конденсаторами пластинчатого вида кроется в довольно большой поверхности, а также в наличии замкнутого контура при разных и одинаковых параметрах. В качестве источника заряда для банки может применяться батарея, аккумулятор либо другое устройство. Электрический заряд способна выдавать и палочка из эбонита, которая заранее была потерта о шерстяной материал. Она имеет свободные электроны.

При соприкосновении стержня из металла с крышкой сосуда электроны перемещаются от палочки на поверхность внутреннего электрода. В результате отрицательные заряды накапливаются на внутреннем электроде, так как банка имеет ограниченную способность к накоплению зарядов. В виду взаимного отталкивания не весь электрический заряд может перейти на электрод. Возможность накапливания или удерживания заряда как раз и зовется емкостью.

Емкость увеличивается благодаря присутствию второго электрода, который расположен на внешних стенках банки. При заземлении этого электрода, заряд который накапливается внутри, может притягивать с поверхности земли плюсовой заряд, равный такой же величине. Плюсовой заряд на электроде внутри банки притягивает отрицательные электроны, что приводит к частичному сдерживанию сил отталкивания. В результате можно несколько увеличить емкость банки.

Емкость может быть увеличена двумя способами:
  1. Повышение площади электродов, что позволит рассредоточить заряды, а также снизить взаимно отталкивающие силы.
  2. Можно также снизить толщину стенки банки. Однако необходимо понимать, что если оставить излишне тонкое стекло, то заряды будут рассеиваться.

Другим способом является подбор изоляционных материалов.

Применение

Лейденская банка считается одним из самых важных изобретений, что дало толчок к дальнейшему изучению электричества. Благодаря этому стали изучаться электропроводящие свойства многих материалов. Именно при помощи этой банки была получена электрическая искра искусственным путем. Сегодня банка в большинстве случаев используется лишь для демонстраций в виде элемента электрофорной машины. Ее заменили устройства в виде современных конденсаторов, которые отличаются большей емкостью и удобством использования.

Тем не менее, использование данного вида конденсатора позволяет наглядно продемонстрировать, как работает это устройство. Но банка имеет определенные ограничения по хранению электронов. Вызвано это не идеальностью применяемых изоляционных материалов. В то же время электроэнергия в такой банке может храниться достаточно долгое время, если отключить ее от цепи.

Благодаря изобретению банки удалось установить влияние элктроразрядов на человека. В результате появилась электромедицина. Именно в этой области стали широко применяться банки для проведения экспериментов и лечения человека. Банки использовались для телеграфов, ведь они давали необходимый сигнал. Устройство заряжалось вручную. Выяснилось, что устройства большего объема могли обеспечивать более сильный разряд.

При этом имелась и определенная зависимость от толщины стекла. При применении банок с тонкими стеклами можно было получать разряд на порядок сильнее, чем с толстыми стеклами. Именно благодаря изучению силы электрического удара появились плоские конденсаторы.

Лейденская банка

своими руками

Сегодня подобную банку можно смастерить самостоятельно и в довольно короткие сроки. Для этого потребуется банка из пластмассы, пластина из жести, которой припаивается изолированный провод, фильтровальная бумага, уголь активированный, соленая вода, а также крышка с выводом-контактом. Пластина помещается на дно банки, конец провода выводится наверх. Закрывается бумагой и слоем угля. Наливается вода, а банка закрывается крышкой с выводом. В результате банка будет иметь два изолированных провода. При подведении напряжения появится эффект конденсации.

Похожие темы:

подробная инструкция. Малоиндуктивный Высоковольтный Конденсатор Конденсатор из проволоки

Конструктивно это «бутерброд» из двух проводников и диэлектрика, которым может быть вакуум, газ, жидкость, органическое или неорганическое твердое тело. Первые отечественные конденсаторы (стеклянные банки с дробью, обклеенные фольгой) делали в 1752 г. М. Ломоносов и Г. Рихтер.

Что может быть интересного в конденсаторе? Приступая к работе над этой статьей я думал что смогу собрать и кратко изложить все об этой примитивной детальке. Но по мере знакомства с конденсатором, я с удивлением понимал, что здесь не рассказать и сотой доли всех сокрытых в нем тайн и чудес…

Конденсатору уже более 250 лет, но он и не думает устаревать. . Кроме того, 1 кг «обычных просто конденсаторов» хранит меньше энергии чем килограмм аккумуляторов или топливных ячеек, но способен быстрее чем они выдать ее, развивая при этом большую мощность. — При быстром разряде конденсатора можно получить импульс большой мощности, например, в фотовспышках, импульсных лазерах с оптической накачкой и коллайдерах. Конденсаторы есть практически в любом приборе, поэтому если у вас нет новых конденсаторов, для опытов их можно выпаять оттуда.

Заряд конденсатора
— это абсолютное значение заряда одной из его обкладок. Он измеряется в кулонах и пропорционален числу лишних (-) или недостающих (+) электронов. Чтобы собрать заряд в 1 кулон, Вам понадобится 6241509647120420000 электрона. В пузырьке водорода, размером со спичечную головку их примерно столько же.

Поскольку способность накапливать заряды у электрода ограничена их взаимным отталкиванием, их переход на электрод не может быть бесконечным. Словно любое хранилище, конденсатор имеет вполне определенную емкость. Так она и называется — электрическая емкость
. Она измеряется в фарадах и для плоского конденсатора с обкладками площадью S
(каждая), расположенными на расстоянии d
, емкость равна Sε 0 ε/d
(приS
>> d
), где ε
– относительная диэлектрическая проницаемость, а ε
0
=8,85418781762039 * 10 -12 .

Емкость конденсатора также равна q/U
, где q
– заряд положительной обкладки, U
— напряжение между обкладками. Емкость зависит от геометрии конденсатора и диэлектрической проницаемости диэлектрика, и не зависит от заряда обкладок.

В заряженном проводнике заряды стараются разбежаться друг от друга как можно дальше и потому находятся не в толще конденсатора, а в поверхностном слое металла, подобно пленке бензина на поверхности воды. Если два проводника образуют конденсатор, то эти избыточные заряды собираются друг напротив друга. Потому практически все электрическое поле конденсатора сосредоточено между его обкладками.

На каждой обкладке заряды распределяются так, чтобы быть подальше от соседей. И расположены они довольно просторно: в воздушном конденсаторе с расстоянием между пластинами 1 мм, заряженном до 120 В, среднее расстояние между электронами составляет более 400 нанометров, что в тысячи раз больше расстояния между атомами (0,1-0,3 нм), а значит на миллионы поверхностных атомов приходится всего один лишний (или недостающий) электрон.

Если уменьшить расстояние
между обкладками, то силы притяжения возрастут, и при том же напряжении заряды на обкладках смогут «ужиться» плотнее. Увеличится емкость
конденсатора. Так и сделал ничего не подозревавший профессор Лейденского университета ван Мушенброк. Он заменил толстостенную бутылку первого в мире конденсатора (созданного немецким священником фон Клейстом в 1745 г.) тонкой стеклянной банкой. Зарядил ее и потрогал, а очнувшись через два дня сообщил, что не согласится повторить опыт, даже если бы за это обещали французское королевство.

Если поместить между обкладками диэлектрик, то они поляризуют его, то есть притянут к себе разноименные заряды из которых он состоит. При этом будет тот же эффект как если бы обкладки приблизились. Диэлектрик с высокой относительной диэлектрической проницаемостью можно рассматривать как хороший транспортер электрического поля. Но никакой транспортер не идеален, поэтому какой бы мы чудесный диэлектрик не добавили поверх уже имеющегося, емкость конденсатора только снизится. Повысить емкость можно только если добавлять диэлектрик (а еще лучше — проводник) вместо
уже имеющегося но обладающего меньшей ε.

В диэлектриках свободных зарядов почти нет. Все они зафиксированы то ли в кристаллической решетке, или в молекулах – полярных (представляющих собой диполи) или нет. Если внешнего поля нет, диэлектрик неполяризован, диполи и свободные заряды разбросаны хаотически и диэлектрик собственного поля не имеет. в электрическом поле он поляризуется: диполи ориентируются по полю. Так как молекулярных диполей очень много, то при их ориентации, плюсы и минусы соседних диполей внутри диэлектрика компенсируют друг друга. Нескомпенсированными остаются только поверхностные заряды – на одной поверхности – одного, на другой — другого. Свободные заряды во внешнем поле также дрейфуют и разделяются.

При этом разные процессы поляризации идут с разной скоростью. Одно дело – смещение электронных оболочек, происходящее практически мгновенно, другое дело – поворот молекул, особенно больших, третье – миграция свободных зарядов. Последние два процесса, очевидно, зависят от темературы, и в жидкостях идут гораздо шустрее, чем в твердых телах. Если нагреть диэлектрик, повороты диполей и миграция зарядов ускорится. Если поле выключить, деполяризация диэлектрика происходит тоже не мгновенно. Он остается некоторое время поляризованным, пока тепловое движение не разбросает молекулы в исходное хаотическое состояние. Поэтому, для конденсаторов, где переключается полярность с высокой частотой пригодны только неполярные диэлектрики: фторопласт, полипропилен.

Если разобрать заряженный конденсатор, а потом собрать (пластмассовым пинцетом), энергия никуда не денется, и светодиод сможет моргнуть. Он даже моргнет если подключить его к конденсатору в разобранном состоянии. Оно и понятно – при разборке заряд с пластин никуда не делся, а напряжение даже выросло, поскольку уменьшилась емкость и теперь обкладки прямо-таки распирает от зарядов. Стоп, как это напряжение выросло, ведь тогда вырастет и энергия? Так и есть, мы же сообщили системе механическую энергию, преодолевая кулоновское притяжение обкладок. Собственно, в этом и фишка электризации трением – зацепить электроны на расстоянии порядка размеров атомов и оттащить на макроскопическое расстояние, тем самым повысив напряжение с нескольких вольт (а таково напряжение в химических связях) до десятков и сотен тысяч вольт. Теперь понятно, почему синтетическая кофта бьется током не когда ее носишь, а только когда ее снимаешь? Стоп, а почему не до миллиардов? Дециметр же в миллиард раз больше ангстрема, на котором мы урвали электроны? Да потому что работа по перемещению заряда в электрическом поле равна интегралу Eq по d и это самое E ослабевает с расстояние квадратично. А если бы на всем дециметре между кофтой и носом было такое же поле как внутри молекул, то щелкнул бы по носу и миллиард вольт.

Проверим это явление – повышение напряжения при растягивании конденсатора – экспериментально. Я написал простую программку на Visual Basic для приема данных с нашего контроллера ПМК018 и вывода их на экран. В общем, берем две 200х150 мм пластины текстолита, покрытого с одной стороны фольгой и припаиваем проводки, идущие к измерительному модулю. Затем кладем на одну из них диэлектрик – лист бумаги – и накрываем второй пластиной. Пластины прилегают неплотно, поэтому придавим их сверху корпусом авторучки (если давить рукой, то можно создать помехи).

Схема измерения простая: потенциометр R1 устанавливает напряжение (в нашем случае это 3 вольта), подаваемое на конденсатор, а кнопка S1 служит для того чтобы подавать его на конденсатор, или не подавать.

Итак, нажмем и отпустим кнопку – мы увидим график, показанный слева. Конденсатор быстро разряжается через вход осциллографа. Теперь попробуем во время разряда ослабить давление на пластины – увидим пик напряжения на графике (справа). Это как раз искомый эффект. При этом расстояние между обкладками конденсатора растет, емкость падает и потому конденсатор начинает разряжаться еще быстрее.

Тут я не на шутку задумался.. Кажется, мы на пороге великого изобретения…Ведь если при раздвигании обкладок на них растет напряжение, а заряд остается прежним, то можно ведь взять два конденсатора, на одном раздвигать на них обкладки, а в точке максимального раздвижения передать заряд неподвижному конденсатору. Потом вернуть обкладки на место и повторить то же самое наоборот, раздвигая другой конденсатор. По идее напряжение на обоих конденсаторах будет расти с каждым циклом в определенное число раз. Отличная идея для электрогенератора! Можно будет создать новые конструкции ветряков, турбин и всего такого! Так, прекрасно… для удобства можно разместить все это на двух дисках, вращающихся в противоположные стороны…. ой что же это… тьфу, это же школьная электрофорная машина! 🙁

В качестве генератора она не прижилась, так как неудобно иметь дело с такими напряжениями. Но на наноуровне все может измениться. Магнитные явления в наноструктурах во много раз слабее электрических, а электрические поля там, как мы уже убедились, огромны, поэтому молекулярная электрофорная машина может стать весьма популярной.

Конденсатор как хранитель энергии

Убедиться, что в самом ничтожнейшем конденсаторе хранится энергия очень легко. Для этого нам понадобится прозрачный светодиод красного свечения и источник постоянного тока (батарейка 9 вольт подойдет, но если номинальное напряжение конденсатора позволяет, лучше взять побольше). Опыт заключается в том чтобы зарядить конденсатор, а потом подключить к нему светодиод (не забываем про полярность), и смотреть как он моргнет. В темной комнате видна вспышка даже от конденсаторов в десятки пикофарад. Это каких-нибудь сто миллионов электронов испускают сто миллионов фотонов. Впрочем это не предел, ведь человеческий глаз может замечать куда более слабый свет. Просто я не нашел еще менее ёмких конденсаторов. Если же счет пошел на тысячи микрофарад, пожалейте светодиод, а вместо этого замыкайте конденсатор на металлический предмет чтобы увидеть искру – очевидное свидетельство наличия в конденсаторе энергии.

Энергия заряженного конденсатора ведет себя во многом подобно потенциальной механической энергии — энергии сжатой пружины, поднятого на высоту груза или водонапорного бачка (а энергия катушки индуктивности, наоборот, подобна кинетической). Способность конденсатора накапливать энергию издавна применяется для обеспечения непрерывной работы устройств при кратковременных спадах питающего напряжения – от часов до трамваев.

Конденсатор также используется для накопления «почти вечной» энергии, вырабатываемой тряской, вибрацией, звуком, детектированием радиоволн или излучения электросетей. Мало-помалу накопленная энергия от таких слабых источников в течение долгого времени позволяет затем некоторое время работать беспроводным датчикам и другим электронным приборам. На этом принципе основана вечная «пальчиковая» батарейка для устройств со скромным энергопотреблением (вроде ТВ пультов). В ее корпусе находится конденсатор емкостью 500 миллифарад и генератор, подпитывающий его при колебаниях с частотой 4–8 герц дармовой мощностью от 10 до 180 милливатт. Разрабатываются генераторы на основе пьезоэлектрических нанопроводков, способные направлять в конденсатор энергию таких слабых вибраций, как биения сердца, удары подошв обуви по земле, и вибрации технического оборудования.

Еще один источник дармовой энергии – торможение. Обычно при торможении транспорта энергия переходит в тепло, а ведь ее можно сохранить и затем использовать при разгоне. Особенно остро стоит эта проблема для общественного транспорта, который тормозит и разгоняется у каждой остановки, что ведет к значительному расходу топлива и загрязнению атмосферы выхлопами. В Саратовской области в 2010 г. фирмой «Элтон» создан «Экобус» — экспериментальная маршрутка с необычными электродвигателями «мотор-колесо» и суперконденсаторами – накопителями энергии торможения, снижающими энергопотребление на 40%. Там применены материалы, разработанные в проекте «Энергия-Буран», в частности, углеродная фольга. Вообще, благодаря созданной еще в СССР научной школе, Россия является одним из мировых лидеров в сфере разработки и производства электрохимических конденсаторов. Например, продукция «Элтона» экспортируется за рубеж с 1998 года, а недавно в США началось производство этих изделий по лицензии российской компании.

Емкость одного современного конденсатора (2 фарады, фото слева) в тысячи раз превышает емкость всего земного шара. Они способны хранить электрический заряд в 40 Кулон!

Используются они, как правило, в автомобильных аудиосистемах, чтобы снизить пиковую нагрузку на электропроводку автомобиля (в моменты мощных бас-ударов) и за счёт огромной ёмкости конденсатора подавить все высокочастотные помехи в бортовой сети.

А вот этот советский «дедушкин сундучок» для электронов (фото справа) не столь емок, но зато выдерживает напряжение в 40.000 вольт (обратите внимание на фарфоровые чашечки, защищающие все эти вольты от пробоя на корпус конденсатора). Это очень удобно для «электромагнитной бомбы», в которой конденсатор разряжается на медную трубочку, которая в тот же момент сжимается снаружи взрывом. Получается очень мощный электромагнитный импульс, выводящий из строя радиоаппаратуру. Кстати, при ядерном взрыве, в отличие от обычного, тоже выделяется электромагнитный импульс, что еще раз подчеркивает сходство уранового ядра с конденсатором. Кстати, такой конденсатор вполне можно напрямую зарядить статическим электричеством от расчески, только конечно заряжать до полного напряжения придется долго. Зато можно будет повторить печальный опыт ван Мушенброка в очень усугубленном варианте.

Если просто потереть об волосы авторучку (расческу, воздушный шарик, синтетическое белье и т.п.), то светодиод от нее гореть не будет. Это потому, что избыточные (отнятые у волос) электроны заневолены каждый в своей точке на поверхности пластика. Поэтому если даже мы и попадем выводом светодиода в какой-то электрон, другие не смогут устремиться за ним и создать нужный для заметного невооруженным глазом свечения светодиода ток. Другое дело, если перенести заряды с авторучки в конденсатор. Для этого возьмем конденсатор за один вывод и буде тереть авторучку по очереди то о волосы, то о свободный вывод конденсатора. Почему именно тереть? Чтобы по максимуму собрать урожай электронов со всей поверхности ручки! Несколько раз повторим этот цикл и подключим к конденсатору светодиод. Он моргнет, причем только при соблюдении полярности. Так конденсатор стал мостиком между мирами «статического» и «обычного» электричества 🙂

Я взял для этого опыта высоковольтный конденсатор, опасаясь пробоя низковольтного, но оказалось, что это излишняя предосторожность. При ограниченной подаче заряда напряжение на конденсаторе может быть намного меньше напряжения источника питания. Конденсатор может преобразовывать большое напряжение в малое. Например, статическое высоковольтное электричество – в обычное. В самом деле, есть ли разница: зарядить конденсатор одним микрокулоном от источнка напряжением 1 В или 1000 В? Если этот конденсатор настолько емкий, что от заряда в 1 мкКл на нем напряжение не повысится выше напряжения одновольтового источника питания (т.е. емкость его выше 1 мкф), то разницы нет. Просто если не ограничивать принудительно кулоны, то от высоковольного источника их захочет прибежать больше. Да и тепловая мощность, выделившаяся на выводах конденсатора будет больше (а количество теплоты то же, просто оно быстрее выделится, оттого и мощность больше).

В общем, видимо, для этого опыта годится любой конденсатор емкостью не более 100 нф. Можно и более, но понадобится долго его заряжать чтобы получить достаточное для светодиода напряжение. Зато, если токи утечки в конденсаторе невелики, светодиод будет гореть дольше. Можно подумать о создании на этом принципе устройства подзарядки сотового телефона от трения его об волосы во время разговора 🙂

Отличным высоковольтным конденсатором является отвертка. При этом ручка ее служит диэлектриком, а металлический стержень и рука человека – обкладками. Мы знаем, что натертая об волосы авторучка притягивает клочки бумаги. Если натирать об волосы отвертку то ничего не выйдет – металл не обладает способностью отнимать электроны у белков – она как не притягивала бумажки, так и не стала. Но если как в предыдущем опыте тереть ее заряженной авторучкой – отвертка, вследствие своей малой емкости, быстро заряжается до высокого напряжения и бумажки начинают к ней притягиваться.

Светится от отвертки и светодиод. На фото нереально поймать краткий миг его вспышки. Но — вспомним свойства экспоненты — угасание-то вспышки длится долго (по меркам затвора фотоаппарата). И вот мы стали свидетелями уникального лингвистико-оптико-математического явления: экспонента экспонировала-таки матрицу фотоаппарата!

Впрочем, к чему такие сложности — есть же видеосъемка. На ней видно, что вспыхивает светодиод довольно ярко:

Когда конденсаторы заряжают до высоких напряжений, начинает играть свою роль краевой эффект, состоящий в следующем. Если диэлектрик на воздухе поместить между обкладками и приложить к ним постепенно повышающееся напряжение, то при некотором значении напряжения на краю обкладки возникает тихий разряд, обнаруживаемый по характерному шуму и свечению в темноте. Величина критического напряжения зависит от толщины обкладки, остроты края, рода и толщины диэлектрика и пр. Чем диэлектрик толще, тем выше кр. Например, чем диэлектрическая постоянная диэлектрика выше, тем оно ниже. Для уменьшения краевого эффекта края обкладки заделывают в диэлектрик с высокой электрической прочностью, утолщают диэлектрик прокладку на краях, закругляют края обкладок, создают на краю обкладок зону с постепенно падающим напряжением за счет изготовления краев обкладок из материала с высоким сопротивлением, уменьшением напряжения, приходящегося на один конденсатор путем разбивки его на несколько последовательно включенных.

Вот почему отцы-основатели электростатики любили чтобы на конце электродов были шарики. Это, оказывается, не дизайнерская фишка, а способ максимально уменьшить стекание заряда в воздух. Дальше уже некуда. Если кривизну какого-то участка на поверхности шарика еще уменьшить,то неизбежно возрастет кривизна соседних участков. Да и тут по-видимому в наших электростатических делах важна не средняя а максимальная кривизна поверхности, которая минимальна, конечно у шарика.

Хм.. но если емкость тела это способность накапливать заряд, то она, наверное, весьма различна для положительных и отрицательных зарядов…. Представим себе сферический конденсатор в вакууме… От души зарядим его отрицательно, не жалея электростанций и гигаватт-часов (вот чем хорош мысленный эксперимент!)… но в какой-то момент избыточных электронов станет на этом шаре так много, что они попросту начнут разлетаться по всему вакууму, лишь бы не находиться в такой электроотрицательной тесноте. А вот с положительным зарядом такого не произойдет – электроны, как бы их мало не осталось, никуда из кристаллической решетки конденсатора не улетят.
Что же получается, положительная емкость заведомо намного больше отрицательной? Нет! Потому что электроны там вообще-то были не для нашего баловства, а для соединения атомов, и без сколь-нибудь заметной их доли, кулоновское отталкивание положительных ионов кристаллической решетки мгновенно разнесет в пыль самый бронированный конденсатор 🙂

На самом же деле, без вторичной обкладки, емкость «уединенных половинок» конденсатора очень мала: электроемкость уединенного куска провода диаметром 2 мм и длиной 1 м равна приблизительно 10 пФ, а всего земного шара – 700 мкф.

Можно построить абсолютный эталон емкости, рассчитав его емкость по физическим формулам исходя из точных измерений размеров обкладок. Так и сделаны самые точные конденсаторы в нашей стране, которые находятся в двух местах. Государственный эталон ГЭТ 107-77 находится в ФГУП СНИИМ и состоит из 4-х безопорных коаксиально-цилиндрических конденсаторов, емкость которых рассчитывается с высокой точностью через скорость света и единицы длины и частоты, а также высокочастотного емкостного компаратора, позволяющего сравнивать емкости приносимых на поверку конденсаторов с эталоном (10 пф) с погрешностью менее 0,01% в диапазоне частот 1-100 МГц (фото слева).

Эталон ГЭТ 25-79 (фото справа), находящийся в ФГУП ВНИИМ им. Д.И. Менделеева содержит расчетный конденсатор и интерферометр в вакуумном блоке, емкостный трансформаторный мост в комплекте с мерами емкости и термостатом и источники излучения со стабилизированной длиной волны. В основу эталона положен метод определения приращений емкости системы перекрестных электродов расчетного конденсатора при изменении длины электродов на заданное количество длин волн высокостабильного светового излучения. Это обеспечивает поддержание точного значения емкости 0,2 пф с точностью выше 0,00005 %

Но на радиорынке в Митино я затруднился найти конденсатор с точностью выше 5% 🙁 Что ж, попробуем рассчитать емкость по формулам на основе измерений напряжения и времени через наш любимый ПМК018 . Будем рассчитывать емкость двумя способами. Первый способ основан на свойствах экспоненты и отношении напряжений на конденсаторе, измеренных в разные моменты разряда. Второй — на измерении заряда, отданного конденсатором при разряде, он получается интегрированием тока по времени. Площадь, ограниченная графиком тока и осями координат, численно равна заряду, отданному конденсатором. Для этих расчетов нужно точно знать сопротивление цепи через которую разряжается конденсатор. Это сопротивление я задал прецизионным резистором на 10 кОм из электронного конструктора .

И вот результаты эксперимента. Обратите внимание на то какая красивая и гладкая получилась экспонента. Она ведь не математически рассчитана компьютером, а непосредственно измерена из самой природы. Благодаря координатной сетке на экране видно, что точно соблюдается свойство экспоненты — через равные промежутки времени уменьшаться в равное количество раз (я даже линейкой мерил на экране 🙂 Таким образом, мы видим, что физические формулы вполне адекватно отражают окружающую нас реальность.

Как видим, измеренная и рассчитанная емкость приблизительно совпадает с номинальной (и с показаниями китайских мультиметров), но не точь-в-точь. Жаль, что нет эталона, чтобы определить какая из них все-таки истинна! Если кто-нибудь знает эталон емкости, недорогой или доступный в быту – обязательно напишите об этом здесь, в комментариях .

В силовой электротехнике первым в мире применил конденсатор Павел Николаевич Яблочков в 1877 г. Он упростил и вместе с тем усовершенствовал конденсаторы Ломоносова, заменив дробь и фольгу жидкостью, и соединив банки параллельно. Ему принадлежит не только изобретение инновационных дуговых ламп, покоривших Европу, но и ряд патентов, связанных с конденсаторами. Попробуем собрать конденсатор Яблочкова, используя подсоленную воду в качестве проводящей жидкости, а в качестве банки – стеклянную банку из по овощей. Получилась емкость 0,442 нф. Заменим банку полиэтиленовым пакетом, имеющим большую площадь и во много раз меньшую толщину – емкость вырастет до 85,7 нф. (Сначала наполним пакет водой и проверим, нет ли токов утечки!) Конденсатор работает – даже позволяет моргнуть светодиодом! Он также успешно выполняет свои функции в электронных схемах (я попробовал его включить в генератор вместо обычного конденсатора — все работает).

Вода тут играет весьма скромную роль проводника, и если есть фольга, то можно обойтись без нее. Так сделаем, вслед за Яблочковым, и мы. Вот конденсатор из слюды и медной фольги , емкостью 130 пф.

Металлические обкладки должны возможно плотно прилегать к диэлектрику, причем надо избегать введения между обкладкой и диэлектриком клеящего вещества, которое вызовет добавочные потери на переменном токе. Поэтому теперь в качестве обкладок применяют главным образом металл, химически или механически осажденный на диэлектрик (стекло) или плотно припрессованный к нему (слюда).

Можно вместо слюды использовать кучу разных диэлектриков, каких угодно. Измерения (для диэлектриков равной толщины) показали, что у воздуха ε
самое маленькое, у фторопласта побольше, у силикона еще больше, а у слюды даже еще больше, а у цирконат-титаната свинца оно просто огромно. Именно так по науке и должно быть – ведь во фторопласте электроны, можно сказать, намертво прикованы фтороуглеродными цепями и могут лишь чуть-чуть отклониться – там даже с атома на атом электрону некуда перескочить.

Вы можете сами провести такие опыты с веществами, имеющими разную диэлектрическую проницаемость. Как вы думаете, что имеет большую диэлектрическую проницаемость, дистиллированная вода или масло? Соль или сахар? Парафин или мыло? Почему? Диэлектрическая проницаемость зависит много от чего… про нее можно было бы написать целую книгу.

Вот и все? 🙁

Нет, не все! Через неделю будет продолжение! 🙂

Данный элемент по праву считается сверх универсальным, так как он одновременно может использоваться в изготовлении и ремонте самых разнообразных приборов. И даже, если приобрести его в уже готовом виде не составит особого труда, многие мастера-любители с удовольствием экспериментируют, пытаясь или даже успешно выполняя конденсатор своими руками. Все, что нужно для создания самодельного конденсатора подробно описано выше и, в принципе, ни с одним из необходимых элементов не должно возникнуть каких-либо трудностей, так как они могут иметься в хозяйстве или, на худой конец, в свободной продаже. Исключением, пожалуй, может стать только парафиновая бумага, которую обычно изготавливают самостоятельно, используя такие материалы, как парафин, папирус и одноразовая зажигалка (как вариант, можно задействовать любой другой безопасный источник открытого пламени).

Так, для того чтобы обработать бумагу должным образом, следует тщательно разогреть с помощью огня парафин и его размягченной частью пройтись по всей поверхности папируса с обеих его сторон. После того, как работы будут окончены, а материал как следует схватится, полученную парафиновую бумагу необходимо сложить гармошкой (имеется ввиду поперечное продвижение). Техника обычная, но предполагает выдерживание определенного шага (через каждые три сантиметра) и для того, чтобы выполнить линию сгиба предельно точной, желательно еще до парафирования наметить простым карандашом первую полосу. Можно продолжить в том же духе, расчерчивая полностью весь лист или же действовать, ориентируясь исключительно по первому отрезку (кому как удобно). Что касается количества необходимых слоев, то этот показатель определяется исключительно емкостью будущего изделия.

На этом этапе сформированную гармошку следует на время отложить в сторону, дабы приступить к заготовке прямоугольных кусочков фольги, размеры которых должны соответствовать в данном случае данным 3 на 4,5 сантиметра. Эти заготовки необходимы для выполнения металлической прослойки конденсатора, поэтому по окончанию вышеуказанных работ фольгу вкладывают во все слои гармошки, следя за тем, чтобы она равномерно укладывалась, после чего приступают к проглаживанию заготовки в сложенном виде с помощью обычного утюга. Парафин и фольга должны сделать свое дело, обеспечив прочное склеивание между собой (другие методы для спаивания конденсатора в домашних условиях не практикуются), после чего конденсатор можно считать абсолютно готовым. Что касается выпирающих за пределы бывшей гармошки элементов фольги, то она не должна давать повод для беспокойства, так как они играют роль соединительных контактов.

Именно с помощью этих небольших по размеру фрагментов, изготовленный собственными руками конденсатор можно полноценно использовать, подключая его к электрической цепи. Естественно, речь идет о примитивном устройстве и для того, чтобы хоть как-то повысить его рабочие показатели, необходимо использовать более качественную фольгу, обладающую высокой плотностью, хотя и тут крайне важно не перестараться, так как существуют определенные лимиты используемого напряжения на поделки для взрослых подобного рода. Так, например, лучше не экспериментировать, пытаясь собственноручно выполнить конденсатор, способный принять слишком высокое напряжение (более 50 Вольт), хотя некоторые «самоделкины» умудряются обойти эту сторону вопроса, используя пакеты для ламинирования вместо стандартных диэлектриков, а также ламинатор для безопасной пайки.

Существует еще несколько методов того, как можно изготовить самодельный конденсатор, причем один из них предполагает работу с более высоким напряжением. К нему можно отнести знаменитую технику «Стакан», название которой пошло от используемого подручного средства — граненного стакана. Данный элемент необходим для обтяжки фольгой с внутренней и внешней стороны, причем делать это следует таким образом, чтобы используемые фрагменты материала не касались друг друга. Сама конструкция в уже «собранном» виде обязательно предусматривает наличие подводов, после чего ее можно считать полностью готовой для использования по прямому назначению. При этом, во время включения ее в цепь необходимо тщательно соблюдать все необходимые меры по безопасности, дабы избежать возможных негативных последствий.

Как вариант, можно попробовать изготовить собственными руками и более усовершенствованную конструкцию, используя такие подручные средства, как одинаковые по размерам стеклянные пластинки, все та же старая добрая фольга повышенной плотности и эпоксидные смолы, предназначенные для надежного соединения перечисленных материалов между собой. Безусловным достоинством такого самодельного конденсатора является то, что он способен осуществлять более качественную работу, как говорится, «без пробоя». Однако, как известно, в бочке меда обычно не обходится без ложки дегтя и в данном случае это напрямую касается одного существенного недостатка данного изобретения, который заключается в его более, чем внушительных габаритах, что делает содержание эдакой «махины» в домашних условиях не очень удобным и рациональным.

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты.

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор — это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы — кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod .r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес — почти втрое больше обычного — в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.

Добрый день! Сегодня я бы хотел вам показать, как сделать лейденскую банку, простейшее устройство, в котором можно хранить электрический заряд.

Статическое электричество это всего лишь недостаток или избыток электронов на поверхности предмета.

Один из путей образования статического электричества — контакт двух разнородных предметов. Многие еще со школы помнят эксперимент с эбонитовой палочкой. Если потереть ее шерстью то часть электронов перебежит на палочку и шерсть останется заряжена положительно, а палочка из-за переизбытка электронов — отрицательно и сможет притягивать легкие предметы.

В быту такая ситуация возникает например при расчесывании волос расческой. Можно даже слышать, как трещат электростатические разряды. Кстати, а знаете ли вы, что такие щелчки имеют напряжение в несколько тысяч вольт? Получается что с помощью обычной расчески можно получить просто огромное напряжение. Только вот заряд который может удержать расческа очень и очень мал. Заряд с расчески можно накопить в другом месте. Например в Лейденской банке. Лейденская банка является по сути простейшим конденсатором.(два проводника разделенные изолятором.

Приступим к изготовлению

Материалы

Классическая лейденская банка обычно делается из стеклянной банки, но у нее слишком толстые стенки, и заряд накапливается не особо большой. Поэтому мы будем использовать пластиковую банку с тонкими стенками. В качестве проводника будем использовать пищевую фольгу, или фольгу от шоколадки.

Шаг 1

Банку нужно покрыть ровным слоем фольги примерно на две трети в высоту, включая само донышко. Избегайте больших складок и разрывов.

Шаг 2

Теперь тоже самое нужно сделать изнутри, до той же высоты, что и внешняя обкладка.

Шаг 3

В центре банки закрепите приемник из фольги, который должен касаться фольги внутри банки. Верхнюю часть нужно вывести из банки наружу.

Если вам лень возиться с оклейкой внутренней части банки,то можно просто налить туда соляного раствора ровно до того уровня, до которого фольга наклеена снаружи.(приемник должен одним концом касаться воды

Итак, теперь у нас есть куда накапливать заряд с расчески. Чтобы сделать это, возьмитесь на наружную обкладку одной рукой и проводите рядом с приемником заряженной расческой другой рукой.

Разрядить банку на себя можно взявшись рукой за обкладку и поднеся палец к приемнику. А еще можно сделать вот такой классный разрядник из куска фольги, который даст более ровную и красивую искру.

На заметку: на пробой 1мм воздуха нужно напряжение в одну тысячу вольт. Кстати, влажность воздуха критически влияет на длину искры(чем суше у вас в квартире, тем длиннее будет искра).

Cамодельный ионистор — суперконденсатор делаем своими руками. — Орден Современной Технократии — ЖЖ

Электрическая емкость земного шара, как известно из курса физики, составляет примерно 700 мкФ. Обычный конденсатор такой емкости можно сравнить по весу и объему с кирпичом. Но есть и конденсаторы с электроемкостью земного шара, равные по своим размерам песчинке — суперконденсаторты. 

Появились такие приборы сравнительно недавно, лет двадцать назад. Их называют по-разному: ионисторами, иониксами или просто суперконденсаторами.

Не думайте, что они доступны лишь каким-то аэрокосмическим фирмам высокого полета. Сегодня можно купить в магазине ионистор размером с монету и емкостью в одну фараду, что в 1500 раз больше емкости земного шара и близко к емкости самой большой планеты Солнечной системы — Юпитера.

Любой конденсатор запасает энергию. Чтобы понять, сколь велика или мала энергия, запасаемая в ионисторе, важно ее с чем-то сравнить. Вот несколько необычный, зато наглядный способ.

Энергии обычного конденсатора достаточно, чтобы он мог подпрыгнуть примерно на метр-полтора. Крохотный ионистор типа 58-9В, имеющий массу 0,5 г, заряженный напряжением 1 В, мог бы подпрыгнуть на высоту 293 м!

Иногда думают, что ионисторы способны заменить любой аккумулятор. Журналисты живописали мир будущего с бесшумными электромобилями на суперконденсаторах. Но пока до этого далеко. Ионистор массой в один кг способен накопить 3000 Дж энергии, а самый плохой свинцовый аккумулятор — 86 400 Дж — в 28 раз больше. Однако при отдаче большой мощности за короткое время аккумулятор быстро портится, да и разряжается только наполовину. Ионистор же многократно и без всякого вреда для себя отдает любые мощности, лишь бы их могли выдержать соединительные провода. Кроме того, ионистор можно зарядить за считаные секунды, а аккумулятору на это обычно нужны часы.

Это и определяет область применения ионистора. Он хорош в качестве источника питания устройств, кратковременно, но достаточно часто потребляющих большую мощность: электронной аппаратуры, карманных фонарей, автомобильных стартеров, электрических отбойных молотков. Ионистор может иметь и военное применение как источник питания электромагнитных орудий. А в сочетании с небольшой электростанцией ионистор позволяет создавать автомобили с электроприводом колес и расходом топлива 1-2 л на 100 км.

Ионисторы на самую разную емкость и рабочее напряжение есть в продаже, но стоят они дороговато. Так что если есть время и интерес, можно попробовать сделать ионистор самостоятельно. Но прежде чем дать конкретные советы, немного теории.

Из электрохимии известно: при погружении металла в воду на его поверхности образуется так называемый двойной электрический слой, состоящий из разноименных электрических зарядов — ионов и электронов. Между ними действуют силы взаимного притяжения, но заряды не могут сблизиться. Этому мешают силы притяжения молекул воды и металла. По сути своей двойной электрический слой не что иное, как конденсатор. Сосредоточенные на его поверхности заряды выполняют роль обкладок. Расстояние между ними очень мало. А, как известно, емкость конденсатора при уменьшении расстояния между его обкладками возрастает. Поэтому, например, емкость обычной стальной спицы, погруженной в воду, достигает нескольких мФ.

По сути своей ионистор состоит из двух погруженных в электролит электродов с очень большой площадью, на поверхности которых под действием приложенного напряжения образуется двойной электрический слой. Правда, применяя обычные плоские пластины, можно было бы получить емкость всего лишь в несколько десятков мФ. Для получения же свойственных ионисторам больших емкостей в них применяют электроды из пористых материалов, имеющих большую поверхность пор при малых внешних размерах.

 На эту роль были перепробованы в свое время губчатые металлы от титана до платины. Однако несравненно лучше всех оказался… обычный активированный уголь. Это древесный уголь, который после специальной обработки становится пористым. Площадь поверхности пор 1 см3 такого угля достигает тысячи квадратных метров, а емкость двойного электрического слоя на них — десяти фарад!

http://techclan.planeta2.org/photo/samodelnyj_ionistor/12-0-529

Самодельный ионистор На рисунке 1 изображена конструкция ионистора. Он состоит из двух металлических пластин, плотно прижатых к «начинке» из активированного угля. Уголь уложен двумя слоями, между которыми проложен тонкий разделительный слой вещества, не проводящего электроны. Все это пропитано электролитом.

При зарядке ионистора в одной его половине на порах угля образуется двойной электрический слой с электронами на поверхности, в другой — с положительными ионами. После зарядки ионы и электроны начинают перетекать навстречу друг другу. При их встрече образуются нейтральные атомы металла, а накопленный заряд уменьшается и со временем вообще может сойти на нет.

Чтобы этому помешать, между слоями активированного угля и вводится разделительный слой. Он может состоять из различных тонких пластиковых пленок, бумаги и даже ваты.
В любительских ионисторах электролитом служит 25%-ный раствор поваренной соли либо 27%-ный раствор КОН. (При меньших концентрациях не сформируется слой отрицательных ионов на положительном электроде.)

В качестве электродов применяют медные пластины с заранее припаянными к ним проводами. Их рабочие поверхности следует очистить от окислов. При этом желательно воспользоваться крупнозернистой шкуркой, оставляющей царапины. Эти царапины улучшат сцепление угля с медью. Для хорошего сцепления пластины должны быть обезжирены. Обезжиривание пластин производится в два этапа. Вначале их промывают мылом, а затем натирают зубным порошком и смывают его струей воды. После этого прикасаться к ним пальцами не стоит.

Активированный уголь, купленный в аптеке, растирают в ступке и смешивают с электролитом до получения густой пасты, которой намазывают тщательно обезжиренные пластины.

При первом испытании пластины с прокладкой из бумаги кладут одна на другую, после этого попробуем его зарядить. Но здесь есть тонкость. При напряжении более 1 В начинается выделение газов Н2, О2. Они разрушают угольные электроды и не позволяют работать нашему устройству в режиме конденсатора-ионистора.

Поэтому мы должны заряжать его от источника с напряжением не выше 1 В. (Именно такое напряжение на каждую пару пластин рекомендовано для работы промышленных ионисторов.)

Подробности для любознательных

При напряжении более 1,2 В ионистор превращается в газовый аккумулятор. Это интересный прибор, тоже состоящий из активированного угля и двух электродов. Но конструктивно он выполнен иначе (см. рис. 2). Обычно берут два угольных стержня от старого гальванического элемента и обвязывают вокруг них марлевые мешочки с активированным углем. В качестве электролита употребляется раствор КОН. (Раствор поваренной соли применять не следует, поскольку при ее разложении выделяется хлор.)

Энергоемкость газового аккумулятора достигает 36 000 Дж/кг, или 10 Вт-ч/кг. Это в 10 раз больше, чем у ионистора, но в 2,5 раза меньше, чем у обычного свинцового аккумулятора. Однако газовый аккумулятор — это не просто аккумулятор, а очень своеобразный топливный элемент. При его зарядке на электродах выделяются газы — кислород и водород. Они «оседают» на поверхности активированного угля. При появлении же тока нагрузки происходит их соединение с образованием воды и электрического тока. Процесс этот, правда, без катализатора идет очень медленно. А катализатором, как выяснилось, может быть только платина… Поэтому, в отличие от ионистора, газовый аккумулятор большие токи давать не может.

Тем не менее, московский изобретатель А.Г. Пресняков (http://chemfiles.narod.r u/hit/gas_akk.htm) успешно применил для запуска мотора грузовика газовый аккумулятор. Его солидный вес — почти втрое больше обычного — в этом случае оказался терпим. Зато низкая стоимость и отсутствие таких вредных материалов, как кислота и свинец, казалось крайне привлекательным.

Газовый аккумулятор простейшей конструкции оказался склонен к полному саморазряду за 4-6 часов. Это и положило конец опытам. Кому же нужен автомобиль, который после ночной стоянки нельзя завести?

И все же «большая техника» про газовые аккумуляторы не забыла. Мощные, легкие и надежные, они стоят на некоторых спутниках. Процесс в них идет под давлением около 100 атм, а в качестве поглотителя газов применяется губчатый никель, который при таких условиях работает как катализатор. Все устройство размещено в сверхлегком баллоне из углепластика. Получились аккумуляторы с энергоемкостью почти в 4 раза выше, чем у аккумуляторов свинцовых. Электромобиль мог бы на них пройти около 600 км. Но, к сожалению, пока они очень дороги.

Дополнительные материалы из раздела сделай сам.
http://techclan.planeta2.org/publ/27

http://vkontakte.ru/note9771591_10283476

Зарядка и переноска: физика и электричество

Когда вы протираете поролоновую пластину шерстяной тканью, вы заряжаете ее отрицательно. Это потому, что пена притягивает электроны к ткани. Часто тарелка, только что доставленная из упаковки, будет начинаться с положительного заряда. Если это так, вам придется протирать пластину достаточно долго, чтобы отменить этот первоначальный заряд, прежде чем вы сможете начать создание значительного отрицательного заряда. Используя электроскоп (например, тот, который вы можете построить с помощью нашего занятия «Электроскоп»), вы можете определить, заряжена ли пена положительно или отрицательно.Пенопласт или пенополистирол TM — изолятор; он будет удерживать свой заряд до тех пор, пока не будет разряжен током, протекающим в воздух, или вдоль пленки влаги на его поверхности.

Когда вы кладете форму для пирога на поролоновую тарелку, электроны на пене отталкивают электроны на противне. Поскольку электроны не могут покинуть форму для пирога, потому что она полностью окружена изолирующим воздухом и пеной, она остается нейтральной. Если вы дотронетесь до формы для пирога, когда она находится рядом с пластиной из пенопласта, подвижные электроны будут отталкиваться от формы на вас.Электроны образуют искру, когда они прыгают по воздуху на несколько миллиметров, чтобы добраться до вашего пальца. Воздух в искре ионизируется, поскольку движущиеся электроны сбивают другие электроны с молекул воздуха. Ионизированный воздух излучает свет и звук. Вы также можете почувствовать поток электронов через палец.

После того, как электроны подскочат к вашему пальцу, сковорода заряжается положительно. Физики говорят, что кастрюлю заряжали индукционным способом. Вы можете переносить положительно заряженную кастрюлю за ручку и переносить положительный заряд на другие объекты.Например, если вы снова поднесете положительно заряженную кастрюлю к пальцу или к любому объекту, который может быть источником электронов, кастрюля будет притягивать электроны, создавая вторую искру.

Когда вы касаетесь положительно заряженной формы для пирога гвоздем на лейденской банке, электроны от гвоздя перетекают на форму для пирога. Возникающий положительный заряд на гвозде притягивает электроны от вашего тела через вашу руку к алюминиевой фольге банки. Тогда в лейденской банке будет положительно заряженный центр, отделенный от отрицательной фольги снаружи изолирующим пластиком баночки с пленкой. Если вы прикоснетесь одним пальцем к фольге и поднесете другой палец к ногтю в центре лейденской банки, выскочит искра, так как отрицательные заряды будут притягиваться через вас к положительному ногтю.

Прелесть лейденской банки в том, что она может накапливать заряды от нескольких заряженных форм для пирога, создавая, таким образом, большую, более заметную, более мощную (и более болезненную) искру.

Физика лейденской банки в «МакГайвере»

В недавнем эпизоде ​​«МакГайвера» Ангус (так его ДЕЙСТВИТЕЛЬНО близкие друзья называют его) строит лейденскую банку из очень простых компонентов.Конечно, здесь есть отличная физика, поэтому я, очевидно, остановлюсь на этом. Полное раскрытие информации — в настоящее время я технический консультант шоу МакГайвера.

Что такое лейденская банка?

Давным-давно люди только начинали разбираться в электричестве — в частности, в изучении электростатики. Лейденская банка изначально использовалась для хранения электрического заряда после зарядки какого-нибудь натертого предмета (например, ваших носков в сушилке). Было два распространенных варианта лейденской банки, позвольте мне проиллюстрировать оба.

Для версии 1 стеклянный стаканчик окружен двумя металлическими частями. Один кусок металла находится внутри чашки, а другой — снаружи. Однако для версии 2 внутренний металл заменен на воду. Да, вы можете заменить металл водой, если вода является проводником электричества. Большая часть воды проводит электричество, но на всякий случай можно добавить немного соли.

а как работает? На самом деле лейденская банка — это просто конденсатор — вот и все. Самый простой конденсатор состоит из двух параллельных металлических пластин, между которыми ничего нет.Если вы добавите заряд к одной стороне пластин, это потянет противоположный заряд на другую пластину (при условии, что есть путь, по которому заряд может попасть туда). Вот как бы это выглядело.

В этом примере есть заряд + Q на одной пластине (и — Q на другой) с разностью электрических потенциалов ΔV. Отношение заряда (только на одной пластине) к разности потенциалов определяется как такая емкость, что. Емкость измеряется в фарадах.

Однако оказывается, что значение емкости зависит только от физической конфигурации устройства. В данном случае это означает размер пластин, расстояние между ними и материал, который находится между ними. Для конденсатора с параллельными пластинами (как указано выше) емкость можно рассчитать как:

Площадь конденсатора составляет A и d — это расстояние между пластинами. Переменная ε (эпсилон) называется диэлектрической проницаемостью и зависит от типа материала между пластинами.

Хотя лейденская банка имеет другую конфигурацию, в основном она работает одинаково. Наружный металл можно заземлить, просто взяв его рукой или протянув провод к металлической водопроводной трубе. Когда вы подносите заряженный предмет (например, пластиковую ручку, которую вы втираете в волосы) рядом с металлом в середине, это добавит заряд воде и привлечет противоположный заряд к внешнему металлу. Можно довести это до довольно высокого напряжения, поскольку стекло между водой и металлом действует как изолятор.

Как сделать лейденскую банку?

Я думаю, вы можете понять это по тому, как это работает — но все же позвольте мне показать вам, как его сделать. Вот видео, которое я сделал вместе с этим эпизодом MacGyver, который проведет вас через эту сборку.

Позвольте мне отметить, что создание подобных видео — одна из лучших частей работы со сценаристами МакГайвера в качестве технического консультанта шоу. Большинство хаков в MacGyver, по крайней мере, научно правдоподобно, но многие из них вы не должны пробовать дома (например, выпрыгивать из трехэтажного окна с огнетушителем и мешком для тела).У других хаков может быть домашняя версия — вот что вы получите здесь. В какой-то момент каждый должен поиграть с вещами.

Что можно сделать с этой лейденской банкой? Как насчет искры? Сначала заземлите его (удерживайте или подключите к земле), а затем потрите чем-нибудь, чтобы получить заряд (пластик на шерсти работает). Прикоснитесь этим пластиком к металлу посередине и повторяйте это, пока не устанете. Теперь поднесите проволоку от внешней фольги к металлическому гвоздю посередине, и у вас должна получиться красивая искра. Вот небольшая искра во влажный день (если сухой, то лучше подойдет).

Leyden Jar Аккумулятор | Институт истории науки

В самом начале 1700-х годов Фрэнсис Хоксби соединил стеклянный шар и кривошип, чтобы сделать электростатическую машину. Но не было возможности хранить заряд, образовавшийся в результате трения ткани или кожи о вращающееся стекло, то есть примерно до 1745 года, когда Юрген фон Клейст в Померании и Питер ван Мушенбрук в Лейдене создали то, что стало известно как лейденская банка.

В простейшем случае лейденская банка представляет собой стеклянную бутылку, которая частично заполнена водой с врезанной в нее проволокой (в более поздних банках внутри и снаружи стекла была обернута металлическая фольга, и воды не было).Мюссенбрук записал, что произошло, когда он впервые коснулся провода после зарядки емкости: «Внезапно я получил в правой руке такой сильный удар, что все мое тело сотряслось, как от удара молнии. . . . Я считал, что мне конец ». Мушенбрук начал давать подробные инструкции о том, как построить свой сосуд, и в эпоху безудержных экспериментов над собой любопытные как в Европе, так и в Америке быстро вызывали у себя кровотечение из носа, приступы головокружения и то, что некоторым казалось сердечным приступом во время своих исследований. .

Лейденская банка очень хорошо использовалась в серьезной науке и в массовых развлечениях. Бенджамин Франклин использовал один из них в своем знаменитом эксперименте с воздушным змеем, чтобы показать, что молния — это обычное электричество. Чтобы развлечь короля, Жан-Антуан Нолле заставил 180 французских солдат прыгнуть в воздух, когда через них протекало электричество из его лейденских кувшинов. Банки также могут быть связаны, что позволяет хранить больше заряда. Франклин назвал эти соединенные банки батареей, но в отличие от настоящей батареи лейденские банки высвободили всю свою энергию за один раз.

В 1790-х годах, в самом конце эпохи Просвещения, спор по поводу электричества между двумя итальянскими учеными — Луиджи Гальвани и Алессандро Вольта — привел к тому, что Вольта построил самую первую батарею. Впервые электричество можно было пустить в непрерывную работу.

Несмотря на свое затмение, лейденские банки не попали в историческую свалку. В самом конце 19 века они нашли новое применение в беспроводной связи и — в миниатюрной форме — активно работают сегодня под новым названием — конденсатор.

CHF недавно купил в Париже набор из шести лейденских банок, датированных примерно 1900 годом. Эти связанные банки, скорее всего, использовались в демонстрационных целях.

leyden_jar

Leyden jar — одно из первых устройств для хранения электрического заряда, изобретенное в 1745 году Питером ван Мушенбруком (1700–1748). Это был первый конденсатор. Лейденские сосуды использовались для проведения многих ранних экспериментов с электричеством.

Рекомендуемые дополнительные знания

Описание

Типичная конструкция состоит из верхнего электрода, электрически соединенного каким-либо образом (обычно цепью) с частью внутренней поверхности стеклянной банки, покрытой металлической фольгой. Снаружи банку оборачивают проводящую фольгу, соответствующую площади внутреннего покрытия. Яс заряжается электростатическим генератором, подключенным к внутреннему электроду, а внешняя пластина заземлена. На внутренней и внешней поверхностях банки хранятся одинаковые, но противоположные заряды.

Изначально устройство представляло собой стеклянную бутылку, частично наполненную водой, с металлической проволокой, проходящей через пробку, закрывающую ее. Роль внешней пластины обеспечивалась рукой экспериментатора.Вскоре было обнаружено, что лучше покрыть внешнюю поверхность сосуда металлической фольгой (Watson, 1746), оставив (случайно) нечистую воду внутри, действующую как проводник, связанный цепью или проводом с внешним выводом, сферой. чтобы избежать потерь от коронного разряда. Первоначально считалось, что заряд хранился в воде. Бенджамин Франклин исследовал лейденскую банку и пришел к выводу, что заряд хранился в стакане, а не в воде, как предполагали другие. Теперь мы знаем, что заряд фактически накапливается не в проводниках, а только в тонком слое вдоль лицевых поверхностей, которые соприкасаются со стеклом или диэлектриком, и может просачиваться на поверхность диэлектрика, если контакт несовершенный и электрическое поле интенсивное. достаточно.Благодаря этому жидкость внутри можно заменить футеровкой из металлической фольги. Ранние экспериментаторы без труда обнаружили, что чем тоньше диэлектрик, чем ближе пластины и чем больше поверхность, тем большее количество заряда может храниться при заданном напряжении.

Дальнейшие разработки в области электростатики показали, что диэлектрический материал не важен, но увеличил накопительную способность (емкость) и предотвратил образование дуги между пластинами. Две пластины, разделенные небольшим расстоянием, также действуют как конденсатор даже в вакууме.

Первоначально емкость измеряли в количестве «банок» заданного размера или по всей площади покрытия, предполагая разумно стандартную толщину и состав стекла. Большая лейденская банка имеет емкость около 1 нФ.

История

Древние греки (и другие) знали, что кусочки янтаря можно натирать, становясь наэлектризованными и притягивая легкие частицы. Это трибоэлектрический эффект, механическое разделение заряда в диэлектрике. Вот почему слово «электричество» произошло от греческого слова ηλεκτρον («электрон», янтарь).

Примерно в 1650 году Отто фон Герике построил грубый генератор трения — серный шар, вращавшийся на валу с высокой скоростью. Когда Герике прижал руку к мячу и быстро повернул вал, возник статический электрический заряд.

В 1745 году другой немец, Эвальд Юрген Георг фон Клейст, нашел способ хранения этого заряда. Он выложил стеклянную банку серебряной фольгой и зарядил фольгу фрикционной машиной.Клейст был убежден, что значительный заряд может быть собран, когда он получил значительный удар от устройства. Это изобретение впоследствии стало известно как лейденская банка, потому что в 1746 году Питер ван Мушенбрук из Лейденского университета, Нидерланды, независимо сделал то же открытие. Мушенбрук сделал сосуд для хранения известным научному миру, поэтому сосуд был назван в честь Лейдена, родного города университета. Даниэль Гралат был первым, кто объединил несколько банок параллельно в «батарею», чтобы увеличить общий возможный накопленный заряд. [1] [2]
К середине XIX века лейденская банка стала достаточно распространенной, и писатели могли предположить, что их читатели знают и понимают ее основную работу. [3] К началу 20 века улучшенные диэлектрики и необходимость уменьшить их размер для использования в новой технологии радио привели к тому, что лейденская банка превратилась в современную компактную форму конденсатора.

Теория схем

Ученый Джеймс Клерк Максвелл изобрел концепцию тока смещения, d D / dt, чтобы согласовать закон Ампера с сохранением заряда в случаях, когда заряд накапливается, например, в лейденской банке.Он интерпретировал это как реальное движение зарядов даже в вакууме, где он предположил, что это соответствует движению дипольных зарядов в эфире. Хотя от этой интерпретации отказались, поправка Максвелла к закону Ампера остается в силе (изменяющееся электрическое поле создает магнитное поле). Ток смещения должен быть включен, например, чтобы применить текущий закон Кирхгофа к лейденской банке.

Городская легенда о «рассекаемой лейденской банке»

Популярная, но вводящая в заблуждение демонстрация лейденской банки включает в себя ее разборку после того, как она была заряжена, и демонстрацию того, что энергия накапливается в диэлектрике, а не в пластинах.Первый задокументированный случай этой демонстрации содержится в письме Бенджамина Франклина. [4]

Лейденская банка состоит из пластиковой чашки, помещенной между двумя плотно прилегающими металлическими чашками. Когда сосуд заряжают высоким напряжением и осторожно разбирают, обнаруживается, что со всеми частями можно свободно обращаться, не разряжая сосуд. Если детали снова собрать, большая искра все еще может быть получена.

Эта демонстрация показывает, что заряд был перенесен на поверхность диэлектрика, а не на металлические проводники.Когда банка разбирается, простое прикосновение к чашке не дает достаточной площади контакта, чтобы удалить весь заряд. Эту площадь поверхности обычно обеспечивают проводники.

Однако, если не объяснить должным образом, это городская легенда. Такое поведение не типично для конденсаторов и не происходит при более низких напряжениях. В типичном конденсаторе заряд находится на поверхности проводников. Перенос заряда на диэлектрик в вышеупомянутом эксперименте происходит из-за высокого напряжения, присутствующего при отделении проводников от диэлектрика, которое перераспределяет заряд на поверхность диэлектрика посредством коронного разряда на краях пластин, когда они скользят. по диэлектрику при разборке. Жалобы на конденсатор — Уильям Дж. Бити, 1996

лейденская банка | Hackaday

Мы склонны рассматривать электричество как часть современного мира. Однако Фалес из Миета записал информацию о статическом электричестве около 585 г. до н.э. Этот греческий философ обнаружил, что натирание янтаря мехом заставляет янтарь притягивать легкие предметы, такие как перья. Интересно, что несколько сотен лет спустя появился эолипил — сырой паровой двигатель, который иногда называют двигателем Героя. Если бы древние соединили эти две идеи, они могли бы придумать тему этого поста: электростатические генераторы. Насколько нам известно, нет.

Это было в 1663 году, когда Отто фон Герике начал экспериментировать с серным шаром, натертым вручную. Это привело к тому, что Исаак Ньютон предложил стеклянные шары и множество других улучшений от других участников, начиная от шерстяной прокладки до коллекторного электрода. К 1746 году у Уильяма Ватсона была машина, состоящая из нескольких стеклянных шаров, меча и ствола пистолета.Читать далее «Волнующие сказки об электростатических генераторах» →

Демонстрация машины Wimshurst

Машина Wimshurst — одна из старейших и наиболее известных электростатических машин, состоящая из двух знаковых дисков встречного вращения и двух лейденских банок. Чаще всего вы видите, как кто-то вручную запускает его, производя искры, хотя мы видели, что он использовался для гораздо большего, в том числе для включения дымоудаления для очистки от дыма и даже для питания лазера.

Прорабатывает интересную последовательность событий.Большинство объяснений пытаются втиснуть все это в одну картину, требуя серьезной умственной гимнастики для визуализации. Это часто означает, что люди сдаются, смиряются и принимают эту работу с помощью мифических механизмов, которые не поддаются пониманию смертных.

Итак, давайте сделаем пошаговое объяснение.

Читать далее «Машины Вимшерста: Высокое напряжение от богов» →

Первые годы в истории конденсаторов были временем, когда конденсаторы использовались в основном для получения раннего понимания электричества, еще до открытия даже электрона.Это было также время для проведения демонстраций в салоне, например, когда выстроилась очередь людей, взявшись за руки и разряжающих через них конденсатор. Современная эра конденсаторов начинается в конце 1800-х годов, когда наступила эпоха практического применения электричества, требующего надежных конденсаторов с особыми свойствами.

Лейденские банки

Маркони с передающим устройством, опубликовано на LIFE [общественное достояние] через Wikimedia Commons Одно из таких практических применений было в беспроводных передатчиках с искровым разрядником Маркони, начиная незадолго до 1900 года и в первом и втором десятилетии.Датчики создавали высокое напряжение для разряда через искровой промежуток, и поэтому использовали фарфоровые конденсаторы, чтобы выдерживать это напряжение. Также требовалась высокая частота. В основном это были лейденские банки, и для получения необходимой емкости требовалось много места.

Слюда

В 1909 году Уильям Дубилье изобрел слюдяные конденсаторы меньшего размера, которые затем использовались на приемной стороне для резонансных цепей в беспроводном оборудовании.

Ранние слюдяные конденсаторы представляли собой в основном слои слюды и медной фольги, скрепленные вместе, как так называемые «зажатые слюдяные конденсаторы».Однако эти конденсаторы были не очень надежными. Будучи просто листами слюды, прижатыми к металлической фольге, между слюдой и фольгой оставались воздушные зазоры. Этот зазор допускал окисление и коррозию и означал, что расстояние между пластинами могло изменяться, изменяя емкость.

В 1920-х годах были разработаны конденсаторы с серебряной слюдой, в которых слюда покрыта с обеих сторон металлом, устраняя воздушные зазоры. С тонким металлическим покрытием вместо более толстой фольги конденсаторы также можно было бы сделать меньше.Это было очень надежно. Конечно, на этом мы не остановились. Современная эра конденсаторов ознаменована одним прорывом за прорывом в увлекательной истории. Давайте взглянем.

Читать «История конденсатора — современность» →

История конденсаторов начинается с первых дней появления электричества. Я сравниваю это с пионерскими днями авиации, когда вы сами создавали самолеты из дерева и холста и изо всех сил пытались взлететь, недостаточно разбираясь в аэродинамике, чтобы знать, как оставаться там. Электричество было аналогичным периодом. Во время открытия конденсатора наше понимание было настолько примитивным, что электричество считалось жидкостью и существовало в двух формах: стекловидное электричество и смолистое электричество. Как вы увидите ниже, все это изменилось в первые годы существования конденсаторов.

История начинается в 1745 году. В то время одним из способов производства электроэнергии было использование машины трения. Он состоял из стеклянного шара, который вращался со скоростью несколько сотен оборотов в минуту, пока вы поглаживали его ладонями.Это генерировало электричество на стекле, которое затем могло быть разряжено. Сегодня мы называем происходящий эффект трибоэлектрическим эффектом, который вы можете продемонстрировать здесь при включении ЖК-экрана.

Читать «История конденсатора — годы первопроходцев» →

Экстраординарный стимпанк [Джейк фон Слатт] выпустил свое последнее творение. На этот раз он построил машину Wimshurst в основном из деталей, напечатанных на 3D-принтере. Машина Вимшерста представляет собой электростатический генератор и была изобретена в конце 1800-х годов Джеймсом Вимшерстом.В нем используются два диска, вращающихся в противоположных направлениях, для создания электростатического заряда, который затем сохраняется в двух лейденских банках. Эти банки также подключаются к искровому разряднику. Когда напряжение поднимется достаточно высоко, банки могут разрядиться сразу, за счет искры через зазор.

Машина

[Джейка] имеет своего рода готическую тематику. Он разработал детали, используя программу Autodesk 123D Design. Первоначально они были напечатаны на PLA. В центре дисков использовались коньковые подшипники, обеспечивающие плавное вращение. Ось была сделана из стекловолоконного вала отражателя проезжей части.Вертикальные опоры крепились к основанию саморезами.

Лейденские кувшины были сделаны из отрезков прозрачной пластиковой трубки. Крышки для банок были напечатаны на 3D-принтере и предназначены для установки на короткие трубы с резьбой 1/8 дюйма. Для внутренних контактов использовалась медная проволока, которая удерживается изолентой. Металлические сектора на каждом диске были сделаны из отрезков алюминиевой ленты.

Вам может быть интересно, как работает эта машина, если она почти полностью сделана из пластика.[Джейк] на самом деле покрасил большинство деталей угольной краской. Это делает их электрически проводящими, и он может затем использовать детали для замыкания электрических цепей. К сожалению, он обнаружил, что это было довольно неэффективно. Машина работает, но производит только искры длиной до 1/2 дюйма. Для сравнения, его другая машина способна генерировать 6-дюймовые искры при использовании лейденских банок такого же размера.

[Джейк] на самом деле пытался перестроить этот проект с использованием ABS, думая, что PLA, возможно, собирал влагу из своего дыхания, но в результате все равно остались только 1/2 дюйма искры.Он подозревает, что неровная поверхность пластиковых деталей может вызывать медленную утечку заряда, препятствуя хорошему накоплению. Он опубликовал все свои проекты на Thingiverse на тот случай, если другие хакеры захотят им заняться.

Есть несколько пустых пластиковых бутылок в мусорном ведре или ваш стол загроможден? Тогда у вас есть большая часть материала, необходимого для создания вашей собственной машины Wimshurst, как это сделал [Томас Ким]. Это демонстрационное и строительное видео — одно из многих сокровищ его канала на YouTube.Он показывает машину в действии, а затем тратит несколько минут в реальном времени, показывая, как он сделал ее сердце, используя пластиковые бутылки, проводящую щетку от лазерного принтера, выброшенные компакт-диски и связку медной проволоки. В качестве бонуса он самодельным электрошокером удаляет токопроводящий материал и краску с компакт-диска. В качестве особого бонуса к этому видео нет саундтрека EDM, только звуки продуктивности.

Машина Вимшерста представляет собой электростатический генератор, который немного предшествует катушке Тесла. Он работает, передавая заряд от одного вращающегося диска к другому диску, вращающемуся в противоположном направлении. Когда заряд достигает собирающего гребня, он хранится в лейденских банках. Наконец, он разряжается красивой искрой, и цикл начинается заново. После того, как вы слишком шокируете своих друзей, используйте свою машину Wimshurst, чтобы сделать электрофильтр.

Читать далее «Причудливая самодельная машина Вимшерста» →

Бенджамин Франклин объясняет Лейденскую банку, Общество Атласа

Лейденскую банку по-разному называют конденсатором или конденсатором, и причины этих двух названий становятся очевидными, если понять логику его работы.Самые ранние лейденские кувшины середины восемнадцатого века представляли собой стеклянную бутылку с пробкой, наполненную водой. Медный провод, который был погружен в воду, проходил через пробку и подводился к машине, генерирующей (скажем так) отрицательный заряд. Сегодня мы знаем, что это означает, что генератор посылает электроны, протекающие через провод и воду, создавая отрицательный заряд на внутренней стороне стекла. Если бы бутылку изолировали от земли, скоро бы достигли точки, в которой емкость больше не могла бы поглощать отрицательный заряд или электроны.Но когда экспериментатор держал бутылку снаружи, результаты были совсем другими. Поскольку одинаковые заряды отталкиваются, сила отрицательных зарядов внутри бутылки выталкивает электроны из ладони экспериментатора и соседнего стекла и в конечном итоге в землю. Положительный заряд, оставшийся на руке экспериментатора и соседнем стекле, будет притягивать электроны внутри стекла, более плотно упаковывая их вместе и освобождая место для еще большего количества электронов и большего отрицательного заряда.

Поскольку лейденская банка работала, сжимая электроны или отрицательный заряд более близко друг к другу, этот тип устройства позже стал называться конденсатором. (Термин, кажется, возник у Алессандро Вольта примерно в 1780 году). Поскольку результатом этого процесса стало увеличение способности емкости поглощать заряд, более современным термином для такого устройства является конденсатор

. Но даже не понимая, как работает лейденская банка, в нее были внесены несколько улучшений.Вместо того чтобы использовать стекло как носитель заряда и как изолятор между двумя типами заряда, Уильям Ватсон выложил стеклянный сосуд изнутри и снаружи металлической фольгой; тогда стекло служило главным образом изолятором. Медная проволока, по которой поступал заряд, крепилась непосредственно к фольге металлической проволокой, а не водой.

В письме от апреля 1748 года «Франклин описал некоторые новые эксперименты, показывающие, что заряженная лейденская банка всегда имеет заряды противоположных знаков на двух проводниках и что заряды имеют одинаковую величину.«(И.Б. Коэн,« Франклин », Словарь научной биографии, стр. 131) В этом смысле, по словам Франклина, экспериментаторы не« заряжали »и« разряжали »лейденскую банку. Раньше она содержала определенное количество электрической жидкости». зарядка »и равное количество после этого.« Зарядка »сосуда просто означала перераспределение жидкости, а« разрядка »требовалась, потому что исходное равновесие не могло быть восстановлено, если электрическая жидкость прошла через бутылку (или, практически говоря, через выступ бутылки).Восстановить его можно было только проводящей связью между внешним и внутренним.

Используя один из первых лейденских сосудов без футеровки из фольги, Франклин объявил о самом удивительном открытии из всех. «Вся сила бутылки и сила шока — в САМОМ СТЕКЛЕ». Франклин доказал это, исключив всех остальных кандидатов.

Сначала он поставил лейденскую банку на стеклянный изолятор. После того, как он осторожно удалил пробку и проволоку, сосуд все еще можно было опорожнить, если экспериментатор прикоснулся к внешней стороне и к воде.Затем он осторожно слил воду из заряженной лейденской банки в пустую незаряженную банку, стоящую на стекле. Этот сосуд не давал никаких указаний на то, что он получил силу электрошока. Затем он снова наполнил пустую лейденскую банку таким же количеством чистой воды и обнаружил, что банка сохраняет способность шокировать. Ясно, что замешано само стекло.

В последнем эксперименте с лейденскими сосудами Франклин спросил, влияет ли форма заряда на сосуд. Это было не так абсурдно, как может показаться.Напомним, что первым открытием Франклина было то, что форма проводников влияла на их способность разряжать наэлектризованное тело. Так что вопрос о форме кувшина вряд ли был глупым. Чтобы ответить на этот вопрос, Франклин сконструировал конденсатор, состоящий из двух свинцовых пластин, разделенных плоским листом стекла. Он производил такой же эффект, как и лейденская банка. Затем Франклин изготовил серию из одиннадцати таких плоских конденсаторов и соединил свинцовые пластины проводом, создав то, что он первым назвал «электрической батареей».

leyden jar Archives — Блог об инновациях в образовании

1 марта 2013 г.

, автор: Norm Barstow

Это руководство о том, как сделать лейденскую банку, которая производит потрясающие искры из материалов, которые вы даже можете найти в своем доме. Это недорого, безвредно и весело.

Читать оставшуюся часть записи »

Оставьте комментарий »| эксперименты, Уровень средней школы, Уровень средней школы, Физика, статическое электричество | Tagged: конденсатор, DIY, деятельность канистры пленки, генераторы, домашнее обучение, лейденская банка | Постоянная ссылка

Автор: Тами О’Коннор

26 февраля 2009 г.

, автор: Тами О’Коннор,

За 16 лет в классе у меня и моих учеников накопилось множество приятных воспоминаний и одно или два не очень приятных воспоминания.Одно воспоминание, которое все еще заставляет меня съежиться, связано с количеством времени, которое я провел, путешествуя от одного центра обработки фильмов к другому, в поисках тех идеальных маленьких контейнеров, которые я так широко использовал в стенах своего научного класса. Я уверен, что вы точно знаете, о чем я говорю … эти маленькие контейнеры, которые можно использовать для всего, от удобного и надежного хранения небольших количеств твердых или жидких веществ до работы в качестве моторного отсека хорошо известной самодельной бумажной ракеты.

Какие универсальные вещи эти канистры для пленки…

Благодаря Бобу Морзу из Сент-Олбанса мы нашли еще одно применение этим мини-контейнерам. В этом коротком сегменте Боб демонстрирует, как сконструировать простую лейденскую банку, которая достаточно велика, чтобы производить красивую искру, но при этом достаточно мала, чтобы быть в полной безопасности, и, что самое главное, достаточно прочной, чтобы использовать ее снова и снова! Единственные необходимые материалы — это банка из пленки, небольшая полоска алюминиевой фольги, скрепка, небольшой отрезок трубы из ПВХ, ткань или кусок меха, чтобы натереть трубу, и небольшое количество воды.

Добавить комментарий

Ваш адрес email не будет опубликован.