Авторазбор

Разборка грузовиков Мерседес–Бенц (Mercedes-Benz)

Содержание

Стабилизаторы тока. Виды и устройство. Работа и применение

Стабилизаторы тока предназначены для стабилизации тока на нагрузке. Напряжение на нагрузке зависит от его сопротивления. Стабилизаторы необходимы для функционирования различных электронных приборов, например газоразрядные лампы.

Для качественного заряда аккумуляторов также необходимы стабилизаторы тока. Они используются в микросхемах для настройки тока каскадов преобразования и усиления. В микросхемах они играют роль генератора тока. В электрических цепях всегда есть разного рода помехи. Они отрицательно влияют на действие приборов и электрических устройств. С такой проблемой легко справляются стабилизаторы.

Виды стабилизаторов тока

Отличительной чертой стабилизаторов тока является их значительное выходное сопротивление. Это дает возможность исключить влияние напряжения на входе, и сопротивления нагрузки, на значение тока на выходе устройства. Стабилизаторы тока поддерживают выходной ток в определенных пределах, меняя при этом напряжение таким образом, что ток, протекающий по нагрузке, остается постоянным.

Стабилизаторы тока на резисторе

В элементарном случае генератором тока может быть схема, состоящая из блока питания и сопротивления. Подобная схема часто используется для подключения светодиода, выполняющего функцию индикатора.

Из недостатков такой схемы можно отметить необходимость использования высоковольтного источника. Только при таком условии можно использовать резистор, имеющий высокое сопротивление, и получить хорошую стабильность тока. На сопротивлении рассеивается мощность P = I 2 х R.

Стабилизаторы на транзисторах

Значительно лучше функционируют стабилизаторы тока, собранные на транзисторах.

Можно выполнить настройку падения напряжения таким образом, что оно будет очень маленьким. Это дает возможность снижения потерь при хорошей стабильности тока на выходе. На выходе транзистора сопротивление очень большое. Такая схема применяется для подключения светодиодов или зарядки аккумуляторных батарей малой мощности.

Напряжение на транзисторе определяется стабилитроном VD1. R2 играет роль датчика тока и обуславливает ток на выходе стабилизатора. При увеличении тока падение напряжения на этом резисторе становится больше. Напряжение поступает на эмиттер транзистора. В итоге напряжение на переходе база-эмиттер, которое равно разности напряжения базы и эмиттерного напряжения, снижается, и ток возвращается к заданной величине.

Схема токового зеркала

Аналогично функционируют генераторы тока. Популярной схемой таких генераторов является «токовое зеркало», в которой вместо стабилитрона применяется биполярный транзистор, а точнее, эмиттерный переход. Вместо сопротивления R2 применяется сопротивление эмиттера.

Стабилизаторы тока на полевике

Схема с применением полевых транзисторов более простая.

Нагрузочный ток проходит через R1. Ток в цепи: «+» источника напряжения, сток-затвор VТ1, нагрузочное сопротивление, отрицательный полюс источника – очень незначительный, так как сток-затвор имеет смещение в обратную сторону.

Напряжение на R1 положительное: слева «-», справа напряжение равно напряжению правого плеча сопротивления. Поэтому напряжение затвора относительно истока минусовое. При снижении нагрузочного сопротивления, ток повышается. Поэтому напряжение затвора по сравнению с истоком имеет еще большую разницу. Вследствие этого транзистор закрывается сильнее.

При большем закрытии транзистора нагрузочный ток снизится, и возвратится к начальной величине.

Устройства на микросхеме

В прошлых схемах имеются элементы сравнения и регулировки. Аналогичная структура схемы применяется при проектировании устройств, выравнивающих напряжение. Отличие устройств, стабилизирующих ток и напряжение, заключается в том, что в цепь обратной связи сигнал приходит от датчика тока, который подключен к цепи нагрузочного тока. Поэтому для создания стабилизаторов тока используют популярные микросхемы 142 ЕН 5 или LМ 317.

Здесь роль датчика тока играет сопротивление R1, на котором стабилизатор поддерживает постоянное напряжение и нагрузочный ток. Величина сопротивления датчика значительно ниже, чем нагрузочное сопротивление. Снижение напряжения на датчике влияет на напряжение выхода стабилизатора. Подобная схема хорошо сочетается с зарядными устройствами, светодиодами.

Импульсный стабилизатор

Высокий КПД имеют импульсные стабилизаторы, выполненные на основе ключей. Они способны при незначительном напряжении входа создавать высокое напряжение на потребителе. Такая схема собрана на микросхеме МАХ 771.

Сопротивления R1 и R2 играют роль делителей напряжения на выходе микросхемы. Если напряжение на выходе микросхемы становится выше опорного значения, то микросхема снижает выходное напряжение, и наоборот.

Если схему изменить таким образом, чтобы микросхема реагировала и регулировала ток на выходе, то получится стабилизированный источник тока.

При падении напряжения на R3 ниже 1,5 В, схема работает в качестве стабилизатора напряжения. Как только нагрузочный ток повышается до определенного уровня, то на резисторе R3 падение напряжения становится больше, и схема действует как стабилизатор тока.

Сопротивление R8 подключается по схеме тогда, когда напряжение становится выше 16,5 В. Сопротивление R3 задает ток. Отрицательным моментом этой схемы можно отметить значительное падение напряжения на токоизмерительном сопротивлении R3. Эту проблему можно решить путем подключения операционного усилителя для усиления сигнала с сопротивления R3.

Устройство и принцип действия

На нестабильность нагрузочного тока влияет значение сопротивления и напряжения на входе. Пример: в котором сопротивление нагрузки постоянно, а напряжение на входе повышается. Ток нагрузки при этом также возрастает.

В результате этого повысится ток и напряжение на сопротивлениях R1 и R2. Напряжение стабилитрона станет равным сумме напряжений сопротивлений R1, R2 и на переходе VT1 база-эмиттер: Uvd1=UR1+UR2+UVT1(б/э)

Напряжение на VD1 не меняется при меняющемся входном напряжении. Вследствие этого ток на переходе база-эмиттер снизится, и повысится сопротивление между клеммами эмиттер-коллектор. Сила тока на переходе коллектор-эмиттере и нагрузочное сопротивление станет снижаться, то есть переходить к первоначальной величине. Так выполняется выравнивание тока и поддержание его на одном уровне.

Стабилизатор для светодиодов

Изготовить такое устройство самостоятельно можно с применением микросхемы LМ 317. Для этого останется только подобрать резистор. Питание для стабилизатора целесообразно применять следующее:
  • Блок от принтера на 32 В.
  • Блок от ноутбука на 19 В.
  • Любой блок питания на 12 В.

Достоинством такого устройства является низкая стоимость, простота конструкции, повышенная надежность. Сложную схему нет смысла собирать самостоятельно, проще ее приобрести.

Похожие темы:

Стабилизатор тока светодиода, схемы

См. также:  Электронный балласт для светодиодной лампы. Схемотехника.

Статья-ликбез по стабилизаторам тока светодиодов и не только. Рассматриваются схемы линейных и импульсных стабилизаторов тока.

Стабилизатор тока для светодиода устанавливается во многие конструкции светильников. Светодиоды, как и все диоды имеют нелинейную вольт-амперную характеристику. Это означает, что при изменении напряжения на светодиоде, ток изменяется непропорционально. По мере увеличения напряжения, сначала ток растёт очень медленно, светодиод при этом не светится. Затем, при достижении порогового напряжения, светодиод начинает светиться и ток возрастает очень быстро. При дальнейшем увеличении напряжения, ток возрастает катастрофически и светодиод сгорает.

Пороговое напряжение указывается в характеристиках светодиодов, как прямое напряжение при номинальном токе. Номинальный ток для большинства маломощных светодиодов — 20 мА. Для мощных светодиодов освещения, номинальный ток может быть больше — 350 мА или более. Кстати, мощные светодиоды выделяют тепло и должны быть установлены на теплоотвод.

Для правильной работы светодиода, его надо питать через стабилизатор тока. Зачем? Дело в том, что пороговое напряжение светодиода имеет разброс. Разные типы светодиодов имеют разное прямое напряжение, даже однотипные светодиоды имеют разное прямое напряжение — это указано в характеристиках светодиода как минимальное и максимальное значения. Следовательно, два светодиода, подключенные к одному источнику напряжения по параллельной схеме будут пропускать разный ток. Этот ток может быть настолько разным, что светодиод может раньше выйти из строя или сгореть сразу. Кроме того, стабилизатор напряжения также имеет дрейф параметров (от уровня первичного питания, от нагрузки, от температуры, просто по времени). Следовательно, включать светодиоды без устройств выравнивания тока — нежелательно. Различные способы выравнивания тока рассмотрены отдельно. В этой статье рассматриваются устройства, устанавливающие вполне определённый, заданный ток — стабилизаторы тока.

Типы стабилизаторов тока

Стабилизатор тока устанавливает заданный ток через светодиод вне зависимости от приложенного к схеме напряжения. При увеличении напряжения на схеме выше порогового уровня, ток достигает установленного значения и далее не изменяется. При дальнейшем увеличении общего напряжения, напряжение на светодиоде перестаёт меняться, а напряжение на стабилизаторе тока растёт.

Поскольку напряжение на светодиоде определяется его параметрами и в общем случае неизменно, то стабилизатор тока можно назвать также стабилизатором мощности светодиода. В простейшем случае, выделяемая устройством активная мощность (тепло) распределяется между светодиодом и стабилизатором пропорционально напряжению на них. Такой стабилизатор называется линейным. Также существуют более экономичные устройства — стабилизаторы тока на базе импульсного преобразователя (ключевого преобразователя или конвертера). Они называются импульсными, поскольку внутри себя прокачивают мощность порциями — импульсами по мере необходимости для потребителя. Правильный импульсный преобразователь потребляет мощность непрерывно, внутри себя передаёт её импульсами от входной цепи к выходной и выдаёт мощность в нагрузку уже опять непрерывно.

Линейный стабилизатор тока

Линейный стабилизатор тока греется тем больше, чем больше приложено к нему напряжение. Это его основной недостаток. Однако, он имеет ряд преимуществ, например:

  • Линейный стабилизатор не создаёт электромагнитных помех
  • Прост по конструкции
  • Имеет низкую стоимость в большинстве применений

Поскольку импульсный преобразователь не бывает абсолютно эффективным, существуют приложения, когда линейный стабилизатор имеет сравнимую или даже большую эффективность — когда входное напряжение лишь немного превышает напряжение на светодиоде. Кстати, при питании от сети, часто используется трансформатор, на выходе которого устанавливается линейный стабилизатор тока. То есть, сначала напряжение снижается до уровня, сравнимого с напряжением на светодиоде, а затем, с помощью линейного стабилизатора устанавливается необходимый ток.

В другом случае, можно приблизить напряжение светодиода к напряжению питания — соединить светодиоды в последовательную цепочку. Напряжение на цепочке будет равняться сумме напряжений на каждом светодиоде.

Схемы линейных стабилизаторов тока

Самая простая схема стабилизатора тока — на одном транзисторе (схема «а»). Поскольку транзистор — это усилитель тока, то его выходной ток (ток коллектора) больше тока управления (ток базы) в h21 раз (коэффициент усиления). Ток базы можно установить с помощью батарейки и резистора, или с помощью стабилитрона и резистора (схема «б»). Однако такую схему трудно настраивать, полученный стабилизатор будет зависеть от температуры, кроме того, транзисторы имеют большой разброс параметров и при замене транзистора, ток придётся подбирать снова. Гораздо лучше работает схема с обратной связью «в» и «г». Резистор R в схеме выполняет роль обратной связи — при увеличении тока, напряжение на резисторе возрастает, тем самым запирает транзистор и ток снижается. Схема «г», при использовании однотипных транзисторов, имеет бóльшую температурную стабильность и возможность максимально уменьшить номинал резистора, что снижает минимальное напряжение стабилизатора и выделение мощности на резисторе R.

Стабилизатор тока можно выполнить на базе полевого транзистора с p-n переходом (схема «д»). Напряжение затвор-исток устанавливает ток стока. При нулевом напряжении затвор-исток, ток через транзистор равен начальному току стока, указанному в документации. Минимальное напряжение работы такого стабилизатора тока зависит от транзистора и достигает 3 вольт. Некоторые производители электронных компонентов выпускают специальные устройства — готовые стабилизаторы с фиксированным током, собранные по такой схеме — CRD (Current Regulating Devices) или CCR (Constant Current Regulator) . Некоторые называют его диодным стабилизатором, поскольку в обратном включении он работает как диод.

Компания On Semiconductor выпускает линейный стабилизатор серии NSIxxx, например NSIC2020B, который имеет два вывода и для увеличения надежности, имеет отрицательный температурный коэффициент — при увеличении температуры, ток через светодиоды снижается.

Импульсный стабилизатор тока

Стабилизатор тока на базе импульсного преобразователя по конструкции очень похож на стабилизатор напряжения на базе импульсного преобразователя, но контролирует не напряжение на нагрузке, а ток через нагрузку. При снижении тока в нагрузке, он подкачивает мощность, при увеличении — снижает. Наиболее распространённые схемы импульсных преобразователей имеют в своём составе реактивный элемент — дроссель, который с помощью коммутатора (ключа) подкачивается порциями энергии от входной цепи (от входной ёмкости) и в свою очередь передаёт её нагрузке. Кроме очевидного преимущества экономии энергии, импульсные преобразователи обладают рядом недостатков, с которыми приходится бороться различными схемотехническими и конструктивными решениями:

  • Импульсный конвертер производит электрические и электромагнитные помехи
  • Имеет как правило сложную конструкцию
  • Не обладает абсолютной эффективностью, то есть тратит энергию для собственной работы и греется
  • Имеет чаще всего бóльшую стоимость, по сравнению, например, с трансформаторными плюс линейными устройствами

Поскольку экономия энергии во многих приложениях является решающей, разработчики компонентов, схемотехники стараются снизить влияние этих недостатков, и, зачастую, преуспевают в этом.

Схемы импульсных преобразователей

Поскольку стабилизатор тока основан на импульсном преобразователе, рассмотрим основные схемы импульсных преобразователей. Каждый импульсный преобразователь имеет ключ, элемент, который может находиться только в двух состояниях — включенном и выключенном. В выключенном состоянии, ключ не проводит ток и, соответственно, на нём не выделяется мощность. Во включенном состоянии, ключ проводит ток, но имеет очень малое сопротивление (в идеале — равное нулю), соответственно на нём выделяется мощность, близкая к нулю. Таким образом, ключ может передавать порции энергии от входной цепи к выходной практически без потерь мощности. Однако, вместо стабильного тока, какой можно получить от линейного источника питания, на выходе такого ключа будет импульсное напряжение и ток. Для того, чтобы получить снова стабильные напряжение и ток, можно поставить фильтр.

С помощью обычного RC фильтра можно получить результат, однако, эффективность такого преобразователя не будет лучше линейного, поскольку вся избыточная мощность выделится на активном сопротивлении резистора. Но если использовать вместо RC — LC фильтр (схема «б»), то, благодаря «специфическим» свойствам индуктивности, потерь мощности можно избежать. Индуктивность обладает полезным реактивным свойством — ток через неё возрастает постепенно, подаваемая на него электрическая энергия преобразуется в магнитную и накапливается в сердечнике. После выключения ключа, ток в индуктивности не пропадает, напряжение на индуктивности меняет полярность и продолжает заряжать выходной конденсатор, индуктивность становится источником тока через обводной диод D. Такая индуктивность, предназначенная для передачи мощности, называется дросселем. Ток в дросселе правильно работающего устройства присутствует постоянно — так называемый неразрывный режим или режим непрерывного тока (в западной литературе такой режим называется Constant Current Mode — CCM). При снижении тока нагрузки, напряжение на таком преобразователе возрастает, энергия, накапливаемая в дросселе снижается и устройство может перейти в разрывный режим работы, когда ток в дросселе становится прерывистым. При таком режиме работы резко повышается уровень помех, создаваемых устройством. Некоторые преобразователи работают в пограничном режиме, когда ток через дроссель приближается к нулю (в западной литературе такой режим называется Border Current Mode — BCM). В любом случае, через дроссель течет значительный постоянный ток, что приводит к намагничиванию сердечника, в связи с чем, дроссель выполняется особой конструкции — с разрывом или с использованием специальных магнитных материалов.

Стабилизатор на базе импульсного преобразователя имеет устройство, регулирующее работу ключа, в зависимости от нагрузки. Стабилизатор напряжения регистрирует напряжение на нагрузке и изменяет работу ключа (схема «а»). Стабилизатор тока измеряет ток через нагрузку, например с помощью маленького измерительного сопротивления Ri (схема «б»), включенного последовательно с нагрузкой.

Ключ преобразователя, в зависимости от сигнала регулятора, включается с различной скважностью. Есть два распространённых способа управления ключом — широтно-импульсная модуляция (ШИМ) и токовый режим. В режиме ШИМ, сигнал ошибки управляет длительностью импульсов при сохранении частоты следования. В токовом режиме, измеряется пиковый ток в дросселе и изменяется интервал между импульсами.

В современных ключевых преобразователях в качестве ключа обычно используется MOSFET транзистор.

Понижающий преобразователь

Рассмотренный выше вариант преобразователя называется понижающим, поскольку напряжение на нагрузке всегда ниже напряжения источника питания.

Поскольку в дросселе постоянно течёт однонаправленный ток, требования к выходному конденсатору могут быть снижены, дроссель с выходным конденсатором играют роль эффективного LC фильтра. В некоторых схемах стабилизаторов тока, например для светодиодов, выходной конденсатор может отсутствовать вообще. В западной литературе понижающий преобразователь называется Buck converter.

Повышающий преобразователь

Схема импульсного стабилизатора, приведённая ниже, также работает на основе дросселя, однако дроссель всегда подключен к выходу источника питания. Когда ключ разомкнут, питание поступает через дроссель и диод на нагрузку. Когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС добавляется к ЭДС источника питания и напряжение на нагрузке возрастает.

В отличие от предыдущей схемы, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе повышающе-понижающий преобразователь называется Boost converter.

Инвертирующий преобразователь

Еще одна схема импульсного преобразователя работает аналогично — когда ключ замыкается, дроссель накапливает энергию, когда ключ размыкается, возникающее на его выводах ЭДС будет иметь обратный знак и на нагрузке появится отрицательное напряжение.

Как и в предыдущей схеме, выходной конденсатор заряжается прерывистым током, следовательно выходной конденсатор должен быть большим, и, возможно, понадобится дополнительный фильтр. В западной литературе инвертирующий преобразователь называется Buck-Boost converter.

Прямоходовой и обратноходовой преобразователи

Наиболее часто блоки питания изготавливаются по схеме, использующей в своем составе трансформатор. Трансформатор обеспечивает гальваническую развязку вторичной цепи от источника питания, кроме того, эффективность блока питания на основе таких схем может достигать 98% и более. Прямоходовой преобразователь (схема «а») передаёт энергию от источника в нагрузку в момент включенного состояния ключа. Фактически — это модифицированный понижающий преобразователь. Обратноходовой преобразователь (схема «б») передаёт энергию от источника в нагрузку во время выключенного состояния.

В прямоходовом преобразователе трансформатор работает в обычном режиме и энергия накапливается в дросселе. Фактически — это генератор импульсов с LC фильтром на выходе. Обратноходовой преобразователь накапливает энергию в трансформаторе. То есть трансформатор совмещает свойства трансформатора и дросселя, что создаёт определённые сложности при выборе его конструкции.

В западной литературе прямоходовой преобразователь называется Forward converter. Обратноходовой — Flyback converter.

Применение импульсного конвертера в качестве стабилизатора тока

Большинство импульсных блоков питания выпускаются с стабилизацией выходного напряжения. Типичные схемы таких блоков питания, особенно мощных, кроме обратной связи по выходному напряжению, имеют схему контроля тока ключевого элемента, например резистор с малым сопротивлением. Такой контроль позволяет обеспечивать режим работы дросселя. Простейшие стабилизаторы тока используют этот элемент контроля для стабилизации выходного тока. Таким образом, стабилизатор тока оказывается даже проще стабилизатора напряжения.

Рассмотрим схему импульсного стабилизатора тока для светодиода на базе микросхемы NCL30100 от известного производителя электронных компонентов On Semiconductor:

Схема понижающего преобразователя работает в режиме неразрывного тока с внешним ключом. Схема выбрана из множества других, поскольку она показывает, насколько простой и эффективной может быть схема импульсного стабилизатора тока с внешним ключом. В приведённой схеме, управляющая микросхема IC1 управляет работой MOSFET ключа Q1. Поскольку преобразователь работает в режиме неразрывного тока, выходной конденсатор ставить необязательно. В многих схемах датчик тока устанавливается в цепи истока ключа, однако, это снижает скорость включения транзистора. В приведённой схеме датчик тока R4 установлен в цепи первичного питания, в результате схема получилась простой и эффективной. Ключ работает на частоте 700 кГц, что позволяет установить компактный дроссель. При выходной мощности 7 Ватт, входном напряжении 12 Вольт при работе на 700 мА (3 светодиода), эффективность устройства более 95%. Схема стабильно работает до 15 Ватт выходной мощности без применения дополнительных мер по отводу тепла.

Ещё более простая схема получается с использованием микросхем ключевых стабилизаторов с встроенным ключом. Например, схема ключевого стабилизатора тока светодиода на базе микросхемы CAV4201/CAT4201:

Для работы устройства мощностью до 7 Ватт необходимо всего 8 компонентов, включая саму микросхему. Импульсный стабилизатор работает в пограничном режиме тока и для его работы требуется небольшой выходной керамический конденсатор. Резистор R3 необходим при питании от 24 Вольт и выше для снижения скорости нарастания входного напряжения, хотя это несколько снижает эффективность устройства. Частота работы превышает 200 кГц и меняется в зависимости от нагрузки и входного напряжения. Это обусловлено методом регулирования — контролем пикового тока дросселя. Когда ток достигает максимального значения, ключ размыкается, когда ток снижается до нуля — включается. Эффективность устройства достигает 94%.

Назад к каталогу статей >>>

Стабилизатор тока для светодиодов: виды, схемы, как сделать

Главным электрическим параметром светодиодов (LED) является их рабочий ток. Когда в таблице характеристик светодиода мы встречаем рабочее напряжение, то нужно понимать, что речь идет о падении напряжения на светодиоде при протекании рабочего тока. То есть рабочий ток определяет рабочее напряжение LED. Поэтому только стабилизатор тока для светодиодов может обеспечить их надежную работу.

Назначение и принцип работы

Стабилизаторы должны обеспечивать постоянный рабочий ток светодиодов когда в сети питания есть проблемы с отклонением напряжения от нормы (вам будет интересно узнать, как подключить светодиод от сети 220 вольт). Стабильный рабочий ток в первую очередь необходим для защиты LED от перегрева. Ведь при превышении максимально допустимого тока, светодиоды выходят из строя. Также стабильность рабочего тока обеспечивает постоянство светового потока прибора, например, при разряде аккумуляторных батарей или колебаниях напряжения в питающей сети.

Стабилизаторы тока для светодиодов имеют разные виды исполнения, а обилие вариантов схем исполнения радует глаз. На рисунке приведены три самые популярные схемы стабилизаторов на полупроводниках.

  1. Схема а) — Параметрический стабилизатор. В этой схеме стабилитрон задает постоянное напряжение на базе транзистора, который включен по схеме эмиттерного повторителя. Благодаря стабильности напряжения на базе транзистора, напряжение на резисторе R тоже постоянно. В силу закона Ома ток на резисторе также не меняется. Так как ток резистора равен току эмиттера, то стабильны токи эмиттера и коллектора транзистора. Включая нагрузку в цепь коллектора, мы получим стабилизированный ток.
  2. Схема б). В схеме, напряжение на резисторе R стабилизируется следующим образом. При увеличении падения напряжения на R, больше открывается первый транзистор. Это приводит к уменьшению тока базы второго транзистора. Второй транзистор немного закрывается и напряжение на R стабилизируется.
  3. Схема в). В третьей схеме ток стабилизации определяется начальным током полевого транзистора. Он не зависит от напряжения, приложенного между стоком и истоком.

В схемах а) и б) ток стабилизации определяется номиналом резистора R. Применяя вместо постоянного резистора подстрочный можно регулировать выходной ток стабилизаторов.

Производители электронных компонентов производят множество микросхем стабилизаторов для светодиодов. Поэтому в настоящее время в промышленных изделиях и в радиолюбительских конструкциях чаще применяются стабилизаторы в интегральном исполнении. Почитать про все возможные способы подключения светодиодов можно здесь.

Обзор известных моделей

Большинство микросхем для питания светодиодов выполнены в виде импульсных преобразователей напряжения. Преобразователи, в которых роль накопителя электрической энергии выполняет катушка индуктивности (дроссель) называются бустерами. В бустерах преобразование напряжения происходит за счет явления самоиндукции. Одна из типичных схем бустера приведена на рисунке.

Схема стабилизатора тока работает следующим образом. Транзисторный ключ находящийся внутри микросхемы периодически замыкает дроссель на общий провод. В момент размыкания ключа в дросселе возникает ЭДС самоиндукции, которая выпрямляется диодом. Характерно то, что ЭДС самоиндукции может значительно превышать напряжение источника питания.

Как видно из схемы для изготовления бустера на TPS61160 производства фирмы Texas Instruments требуется совсем немного компонентов. Главными навесными деталями являются дроссель L1, диод Шоттки D1, выпрямляющий импульсное напряжение на выходе преобразователя, и Rset.

Резистор выполняет две функции. Во-первых, резистор ограничивает ток, протекающий через светодиоды, а во-вторых, резистор служит элементом обратной связи (своего рода датчиком). С него снимается измерительное напряжение, и внутренние схемы чипа стабилизируют ток, протекающий через LED, на заданном уровне. Изменяя номинал резистора можно изменять ток светодиодов.

Преобразователь на TPS61160 работает на частоте 1.2 МГц, максимальный выходной ток может составлять 1.2 А. С помощью микросхемы можно питать до десяти светодиодов включенных последовательно. Яркость светодиодов можно изменять путем подачи на вход «контроль яркости» сигнала ШИМ переменной скважности. КПД приведенной схемы составляет около 80%.

Нужно заметить, что бустеры обычно используются, когда напряжение на светодиодах выше напряжения источника питания. В случаях, когда требуется понизить напряжение, чаще применяют линейные стабилизаторы. Целую линейку таких стабилизаторов MAX16xxx предлагает фирма MAXIM. Типовая схема включения и внутренняя структура подобных микросхем представлена на рисунке.

Как видно из структурной схемы, стабилизация тока светодиодов осуществляется Р-канальным полевым транзистором. Напряжение ошибки снимается с резистора Rsens и подается на схему управления полевиком. Так как полевой транзистор работает в линейном режиме, КПД подобных схем заметно ниже, чем у схем импульсных преобразователей.

Микросхемы линейки MAX16xxx часто применяются в автомобильных приложениях. Максимальное входное напряжение чипов составляет 40 В, выходной ток – 350 мА. Они, как и импульсные стабилизаторы, допускают ШИМ-диммирование.

Стабилизатор на LM317

В качестве стабилизатора тока для светодиодов можно использовать не только специализированные микросхемы. Большой популярностью у радиолюбителей пользуется схема LM317.

LM317 представляет собой классический линейный стабилизатор напряжения имеющий множество аналогов. В нашей стране эта микросхема известна как КР142ЕН12А. Типовая схема включения LM317 в качестве стабилизатора напряжения показана на рисунке.

Для превращения этой схемы в стабилизатор тока достаточно исключить из схемы резистор R1. Включение LM317 в качестве линейного стабилизатора тока выглядит следующим образом.

Выполнить расчет этого стабилизатора довольно просто. Достаточно вычислить номинал резистора R1, подставив значение тока в следующую формулу:

R1=1.25*I0.

Мощность, рассеиваемая на резисторе равна:

W=I2R1.

Регулируемый стабилизатор

Предыдущую схему легко превратить в регулируемый стабилизатор. Для этого нужно постоянный резистор R1 заменить на потенциометр. Схема будет выглядеть так:

Как сделать стабилизатор для светодиода своими руками

Во всех приведенных схемах стабилизаторов используется минимальное количество деталей. Поэтому самостоятельно собрать подобные конструкции сможет даже начинающий радиолюбитель освоивший навыки работы с паяльником. Особенно просты конструкции на LM317. Для их изготовления даже не нужно разрабатывать печатную плату. Достаточно припаять подходящий резистор между опорным выводом микросхемы и ее выходом.

Также к входу и выходу микросхемы нужно припаять два гибких проводника и конструкция будет готова. В случае, если с помощью стабилизатора тока на LM317 предполагается питать мощный светодиод, микросхему нужно оснастить радиатором который обеспечит отвод тепла. В качестве радиатора можно использовать небольшую алюминиевую пластинку площадью 15-20 квадратных сантиметров.

Изготавливая конструкции бустеров, в качестве дросселей можно использовать катушки фильтров различных блоков питания. Например, для этих целей хорошо подойдут ферритовые кольца от блоков питания компьютеров, на которые следует намотать несколько десятков витков эмалированного провода диаметром 0.3 мм.

Какой стабилизатор использовать в авто

Сейчас автолюбители часто занимаются модернизацией светотехники своих машин, применяя для этих целей светодиоды или светодиодные ленты (читайте, как подключить светодиодную ленту в авто). Известно, что напряжение бортовой сети автомобиля может сильно меняться в зависимости от режима работы двигателя и генератора. Поэтому в случае с авто особенно важно применять не стабилизатор 12 вольт, а рассчитанный на конкретный тип светодиодов.

Для автомобиля можно посоветовать конструкции на основе LM317. Также можно использовать одну из модификаций линейного стабилизатора на двух транзисторах, в которой в качестве силового элемента использован мощный N-канальный полевой транзистор. Ниже приведены варианты подобных схем, в том числе и схема светодиодного драйвера.

Вывод

Подводя итог можно сказать, что для надежной работы светодиодных конструкций их необходимо питать с помощью стабилизаторов тока. Многие схемы стабилизаторов просты и доступны для изготовления своими руками. Мы надеемся, что приведенные в материале сведения будут полезны всем, кто интересуется данной темой.

СТАБИЛИЗАЦИЯ ТОКА — это… Что такое СТАБИЛИЗАЦИЯ ТОКА?

СТАБИЛИЗАЦИЯ ТОКА
СТАБИЛИЗАЦИЯ ТОКА — автоматическое поддержание определенного (заданного) значения тока (преимущественно постоянного) в электрической цепи при изменениях в заданных пределах величины нагрузки. Осуществляют с помощью электронных приборов с резко выраженной нелинейностью вольт-амперной характеристики (бареттеров, диодов и др.) или электронных усилителей с отрицательной обратной связью по току.

Большой Энциклопедический словарь.
2000.

  • СТАБИЛИЗАЦИЯ НАПРЯЖЕНИЯ
  • СТАБИЛИЗАЦИЯ УСИЛЕНИЯ

Смотреть что такое «СТАБИЛИЗАЦИЯ ТОКА» в других словарях:

  • стабилизация тока — автоматическое поддержание определённого (заданного) значения тока (преимущественно постоянного) в электрической цепи при изменениях в заданных пределах величины нагрузки. Осуществляют с помощью электронных приборов с резко выраженной… …   Энциклопедический словарь

  • стабилизация тока — srovės stabilizavimas statusas T sritis fizika atitikmenys: angl. current stabilization vok. Stromstabilisierung, f rus. стабилизация тока, f pranc. stabilisation de courant, f …   Fizikos terminų žodynas

  • СТАБИЛИЗАЦИЯ ТОКА И НАПРЯЖЕНИЯ — поддержание заданного значениянапряжения (или тока) при изменении сопротивления нагрузки, напряженияпитания и т. п. Для С. т. и н. обычно применяются электронные устройства …   Физическая энциклопедия

  • Стабилизация тока контактной машины — 40. Стабилизация тока контактной машины Стабилизация тока Поддержание сварочного тока контактной машины в заданных пределах при колебании напряжения питающей сети Источник: ГОСТ 22990 78: Машины контактные. Термины и определения оригинал… …   Словарь-справочник терминов нормативно-технической документации

  • стабилизация — 3.6.4 стабилизация (stabilisation): Состояние, при котором три отсчета показаний газоанализатора, взятые подряд с интервалом 2 мин при неизменном составе анализируемого газа отличаются между собой не более чем на ±1 % диапазона измерений.… …   Словарь-справочник терминов нормативно-технической документации

  • СТАБИЛИЗАЦИЯ НЕУСТОЙЧИВОСТЕЙ ПЛАЗМЫ — удерживаемой магнитным полем, осуществление условий, при к рых неустойчивости, опасные для удержания плазмы, не реализуются. Проблема С. н. п. возникла в исследованиях по управляемому термоядерному синтезу. Крупномасштабные МГД неустойчивости мо …   Физическая энциклопедия

  • стабилизация — (лат. stabilis устойчивый) приведение в устойчивое состояние; поддержание постоянства каких л. величия, равномерности, ритмичности каких л. процессов, устойчивости свойств; состояние устойчивости, постоянства. Новый словарь иностранных слов. by… …   Словарь иностранных слов русского языка

  • стабилизаторы напряжения и тока — устройства для автоматического поддержания постоянства электрического напряжения на входах приёмников электрической энергии (стабилизатор напряжения) или силы тока в их цепях (стабилизатор тока) независимо от колебаний напряжения в питающей сети… …   Энциклопедия техники

  • Компенсационный стабилизатор напряжения (тока) вторичного электропитания РЭА — а электропитания РЭА) : Стабилизатор напряжения [тока] источника электропитания радиоэлектронной аппаратуры, в котором стабилизация напряжения [тока] осуществляется за счет воздействия изменения выходного напряжения [тока] на его регулирующее… …   Словарь-справочник терминов нормативно-технической документации

  • функция стабилизации работы (дифференциальной) защиты по второй гармонике пускового тока — стабилизация работы (дифференциальной) защиты по второй гармонике пускового тока [Интент] Тематики релейная защита Синонимы стабилизация работы (дифференциальной) защиты по второй гармонике пускового тока EN inrush restraint of differential… …   Справочник технического переводчика

Как самому изготовить стабилизатор тока для светодиодов: схемы

Иногда у автолюбителей появляется необходимость ограничить ток заряда АКБ, проверить тот или иной источник питания или пропустить напряжение через диоды. Чтобы осуществить одну из этих задач, есть смысл применить стабилизатор тока для светодиодов своими руками. Подробнее о том, какие существуют схемы для разработки данного девайса, вы узнаете ниже.

Содержание

[ Раскрыть]

[ Скрыть]

Схемы стабилизаторов и регуляторов тока

Источники тока не имеют ничего общего с источниками напряжения. Предназначение первых заключается в стабилизации выходного параметра, а также возможном изменении выходного напряжения. Это происходит так, чтобы уровень ток все время был одинаковым. Источники тока используются для запитки светодиодных ламп, заряда АКБ в авто и т.д. Если у вас возникла необходимость сделать простейший импульсный стабилизатор тока ходовых огней 12в для автомобиля своими руками, то предлагаем вашему вниманию несколько схем.

На КРЕНке

Обустройство цепи на кренке

Чтобы сделать простейший автомобильный импульсный стабилизатор тока в домашних условиях, вам потребуется микросхема 12v. Для этих целей отлично подойдет lm317. Такой стабилизатор напряжения 12 в lm317 считается регулируемым и способен функционировать с токами бортовой сети до полутора ампер. При этом показатель входного напряжения может составить до 40 вольт, lm317 в состоянии рассеивать мощность до 10 ватт. Но это возможно только в том случае, если будет соблюдаться тепловой режим.

В целом потребление тока lm317 сравнительно небольшое — в районе 8 мили ампер, и данный показатель почти никогда не изменяется. Даже в том случае, если через крен lm317 проходит другой ток или меняется показатель входного напряжение. Как вы можете понять, стабилизатор 12 в lm317 для бортовой сети авто дает возможность удерживать постоянное напряжение на компоненте R3.

Кстати, этот показатель можно регулировать благодаря использованию элемента R2, но пределы будут незначительными. В устройстве lm317 компонент R3 является устройством задающего тока. Так как показатель сопротивления lm317 всегда остается на одном и том же уровне, ток, который проходит через него, также будет стабильным (автор видео — Denis T).

Что касается входа крен lm317, ток на них составит на 8 мили ампер выше. Используя вышеописанную схему, можно разработать самый простой стабилизатор напряжения для ДХО автомобиля. Такой девайс может применяться как устройство электронной нагрузки, источника тока для подзарядки АКБ и других целей. Нужно отметить, что интегральные девайсы током 3а или меньше довольно быстро реагируют на различные изменения импульса. Что касается недостатков, то такие девайсы характеризуются слишком высоким сопротивлением, в результате чего придется применять мощные компоненты.

На двух транзисторах

Довольно распространенными сегодня являются стабилизаторы для бортовой сети автомобиля 12v на двух транзисторах. Одним из основных недостатков такого устройства является плохая стабильность тока, если происходят изменения в питающем напряжении вольт. Тем не менее, данная схема для бортовой сети автомобиля 12v подходит для многих задач.

Обустройство цепи на транзисторах

Ниже вы сможете ознакомиться с самой схемой. В этом случае устройством, которое раздает ток, является резистор R2. Когда данный показатель растет, соответственно растет и напряжение на данном элементе. В том случае, если показатель составляет от 0.5 до 0.6 вольт, открывается компонент VT1. При открытии данное устройство будет закрывать элемент VT2, в результате чего ток, который проходит через VT2, начнет снижаться. При разработке схемы можно использовать полевой транзистор Мосфет вместе VT2.

Что касается компонента VD1, то он применяется на напряжение от 8 до 15 вольт и нужен в том случае, если его уровень слишком высокий и работоспособность транзистора может быть нарушена. Если транзистор мощный, то показатель напряжения в сети авто может составить около 20 вольт. Необходимо помнить о том, что транзистор Мосфет открывается в том случае, когда показатель напряжения на затворе составит 2 вольта. Если вы используете универсальный выпрямитель для заряда АКБ или других задач, то вам вполне хватит работы транзистора и резистора R1.

На операционном усилителе (на ОУ)

Механизм на операционном усилителе

Вариант сборки устройства со специальным усилителем ошибки для авто актуален в том случае, если у вас возникла необходимость разработать устройство, работающее в широких пределах. В данном случае выполнять функцию токозадающего элемента будет R7. Операционный увелитель DA2.2 позволяет усилить уровень напряжения в вольтах токозадающего элемента. Устройство DA 2.1 предназначено для сравнивания уровня опорного параметра. Помните о том, что данная схема девайса на 3а нуждается в дополнительном питании, которое должно подаваться на разъем ХР2. Уровня напряжения в вольтах должно хватить для того, чтобы обеспечить функциональность элементов всей системы.

Устройство для авто должно быть дополнено генератором, в нашем случае эту функцию выполняет элемент REF198, характеризующийся уровнем выходного напряжения в 4 вольта. Сама схема стоит достаточно дорого, так что при необходимости вместо нее можно установить кренку. Чтобы правильно произвести настройку, следует установить ползунок резистора R1 в верхнее положение, а с помощью элемента R3 выставляется нужное значение тока 3а. Чтобы предотвратить возбуждение, используются компоненты R2, C2 и R4.

На микросхеме импульсного стабилизатора

Схема механизма с применением импульсного устройства

В некоторых случаях устройство для авто должно функционировать не только в большом диапазоне нагрузок, при этом обладая высоким коэффициентом полезного действия. Тогда использование компенсационных устройств будет не целесообразным, вместо них применяются импульсные элементы.

Предлагаем ознакомиться с одной из наиболее распространенных схем МАХ771, ее особенности следующие:

  • уровень опорного напряжения — 1.5 вольт;
  • коэффициент полезного действия при нагрузке от 10 мили ампер до 1 ампера составит около 90%;
  • показатель питания составляет от 2 до 16.5 вольт;
  • мощность на выходе достигает 15 ватт (автор видео — Андрей Канаев).

Что представляет собой процедура стабилизации? Компоненты R1 и R2 — это делители выходных показателей схемы. Когда уровень делимого напряжения становится больше, чем опорное, устройство автоматически снижает выходной параметр. При обратном процессе устройство будет увеличивать данный показатель. Вы сможете получить рабочий стабилизированный источник тока в том случае, если цепи будут поменяны таким образом, что система в целом станет реагировать на выходной параметр.

Если нагрузка на устройство не особо большая, то есть менее 1.5 вольт, микросхема будет функционировать в качестве рабочего стабилизатора. Но когда этот параметр начнет резко возрастать, девайс переключится в режим стабилизации. Монтаж резистора R8 необходим только тогда, когда уровень нагрузки слишком высокий и составляет более 16 вольт.

Что касается элементы R3, то он является токораздающим. Одним из основных недостатков такого варианта является слишком высокое падение нагрузки на вышеуказанном резисторе. Если вы хотите избавиться от этого минуса, то для того, чтобы увеличить сигнал, необходимо дополнительно установить операционный усилитель.

Заключение

В этой статье мы рассмотрели несколько вариантов стабилизирующих девайсов для авто. Разумеется, такие схемы всегда можно при необходимости модернизировать, способствуя повышению показателя быстродействия и т.д. Имейте в виду, что если нужно, вы всегда можете использовать специально разработанные микросхемы в качестве регулятора. Также при возможности можно самостоятельно производить достаточно мощные регулирующие компоненты, но таких варианты более актуальны для того, чтобы решать определенные задачи.

Как вы видите, разработка схемы — дело достаточно сложное и кропотливое, к нему нельзя просто так подойти, не имея соответствующего опыта. Отсутствие определенных навыков не позволит получить необходимый результат. Чтобы своими руками сделать такую схему для авто, необходимо внимательно выполнять все действия, описанные выше.

Видео «Устройство для питания светодиодов»

Как в домашних условиях сделать стабилизатор для питания ламп в авто или других целей — узнайте из видео (автор видео — Дед Синь).

 Загрузка …

Как из простого преобразователя сделать стабилизатор тока. Как сделать стабилизатор тока своими руками. Описание и схема

Я уже как-то рассказывал про схему, позволяющую сделать индикацию тока нагрузки выше определенного порога. Сегодня расскажу про то, как при помощи этой схемы доработать простой преобразователь напряжения и получить в итоге стабилизатор тока.

Наверняка в хозяйстве многих радиолюбителей валяются подобные мелкие платки преобразователей напряжения. Стоят они копейки и часто их продают на вес десятками.

Платка мелкая, но очень полезная, но она позволяет работать только в режиме стабилизации напряжения, которое выставляется подстроечным резистором.

Также иногда бывают ситуации, когда надо сделать стабилизатор тока буквально «из палок и веревок», например для питания светодиодов, заряда аккумуляторов и прочего.
В этом может помочь простой индикатор тока потребления, о котором я подробно рассказывал в отдельном видео.

Собран он по простейшей схеме.
При прохождении тока через данную схему на резисторе R1 падает некоторое напряжение, которое зависит от силы тока.
Напряжение которое падает на резисторе R1 открывает транзистор когда для этого будет достаточно тока. Обычно транзистор открывается когда на резисторе R1 падает около 0.6-0.7 Вольта.
Открывшись, транзистор подает ток в цепь светодиода, засвечивая его. Изменяя номинал резистора R1 можно менять ток, при котором будет светиться светодиод. Например при номинале в 1 Ом этот ток составляет около 0.6-0.7 Ампера. Если поставить резистор в два раза меньше сопротивлением, то соответственно ток будет уже 1.2-1.4 Ампера, т.е. изменение пропорционально изменению сопротивления.
Транзистор, используемый в данной схеме — BC557B, хотя на самом деле выбор очень большой, например банальный КТ361, а если сделать схему «наизнанку», то и КТ315.

В качестве примера я попробую сделать стабилизатор тока для питания вот такой светодиодной сборки. На ней светодиоды включены параллельно-последовательно, т.е. общее падение около 7 Вольт при токе в 700мА.

Можно конечно было сделать стабилизатор тока на привычной LM317, но это линейный стабилизатор, потому греться он будет ощутимо.
Но мы пойдет другим путем.

Слева синим цветом выделена упрощенная схема понижающего стабилизатора напряжения, который я показал в самом начале. Микросхема контролирует выходное напряжение через вывод FB (FeedBack)
Красным цветом выделена показанная выше платка.

Чтобы правильно все подключить, надо найти где у микросхемы вход обратной связи, на схемах он также обозначается как FB либо Feedback.
На мой плате установлена LM2596, находим описание и выясняем что это вывод номер 4.

Припаиваем проводок прямо к выводу микросхемы, обычно выводы луженые и паяются очень легко.

Подключаем этот провод к коллектору транзистора платы контроля тока, попутно соединяем выход платы преобразователя со входом платы контроля.
На вход преобразователя подаем наше входное напряжение, в моем случае я подал около 17 Вольт. На выходе выставляем напряжение выше, чем надо диодной сборке, например 10-12 Вольт и подключаем сборку к выходу платы контроля тока.

Отлично, ток в цепи получился 650 мА, все работает отлично.

В некоторых ситуациях может потребоваться установка диода между выходом нашей платы и преобразователем, это необходимо чтобы наша схема не оказывала влияния на установку выходного напряжения преобразователя (зависит от примененного ШИМ контроллера).
А если мы хотим чтобы еще и светодиод светился в режиме ограничения тока, то желательно установить еще и резистор, как показано на схеме (R6), номиналом около 56-470 Ом.

Выше я писал насчет аккумуляторов.
Если верхний резистор делителя переключить с выхода преобразователя на выход платы контроля тока, как это показано на схеме, то плата вполне будет способна заряжать и аккумуляторы. Без этого резистора также можно заряжать, но падение напряжения на резисторе R1 будет оказывать некоторое влияние на напряжение окончания заряда.

В качестве дополнения я снял видео, возможно будет полезно.

На этом у меня все, как всегда буду рад вопросам. Кстати, есть вариант такой же доработки, но уже не преобразователя, а блока питания.

Эту страницу нашли, когда искали:
pt6312 применение, стабилизаторы с малым падением напряжения на транзисторе, 6, bnt 600 сделать из него стабилизатор тока, socomec переделка в стабилизатор, схема регулируемого стабилизатора тока для зарядного, линейный стабилизатор повышающий с 12 на 18 вольт схема, повышающий стабилизатор преобразователь на 17 вольт схема, hl2613 замена, схемы импульсных стабилизаторов напряжения своими руками, переделка дс регулятора напряжения в стабилизатор дс напряжения, стабилизация тока и напряжения схемы для ламп мотоцикла, линейный стабилизатор напряжения на транзисторе 12в 4а модуль, как из стабилизатора напряжения сделать стабилизатор тока сопротивление, lm2596s регулировка тока, стабилизатор на lt1585cm 15 своими руками видео, стабилизатор напряжения для оптопары, самодельный стабилизатор на 1,5 вольта., lm2596s доработка, стабилизатор тока на транзисторах расчет, транзисторный стабилизатор напряжения схемы, стабилизатор тока на, mp1584 как стабилизатор тока, как и из чего сделать стабилизатор напряжения на 3,3 вольта, можно ли из дс преобразователя сделать стабилизатор тока, стабилизатор тока своими руками, стабилизатор тока схема, для начинающих радиолюбителей, простой стабилизатор

Посетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Нужен стабилизатор тока? Используйте стабилизатор напряжения!

Добавлено 9 ноября 2020 в 03:11

Сохранить или поделиться

В данной статье показано, как линейные стабилизаторы напряжения могут быть полезны и в приложениях стабилизации тока.

Линейные стабилизаторы напряжения, также (несколько неточно) называемые LDO, являются одними из наиболее распространенных электронных компонентов. Например, LM7805 приобрел почти легендарный статус и непременно был бы включен в зал славы интегральных микросхем, если бы такой зал существовал. В примечании к применению от Texas Instruments хорошо сказано: микросхемы линейных стабилизаторов «настолько просты в использовании», что они настолько «надежны» и «недороги», что обычно являются одними из самых дешевых компонентов в проекте.

Действительно, линейные стабилизаторы удобны, эффективны и универсальны. И на самом деле они могут быть даже более универсальными, чем вы думаете. Схемы линейных стабилизаторов построены на использовании отрицательной обратной связи, как показано на следующей диаграмме, взятой из того же примечания к применению:

Рисунок 1 – Схема линейного стабилизатора напряжения

Отрицательная обратная связь – очень полезная вещь, особенно в сочетании с источником фиксированного тока, как в случае со стабилизатором напряжения LT3085 от Linear Tech. На следующей диаграмме показана внутренняя структура этого устройства.

Рисунок 2 – Схема взята из технического описания LT3085

В предыдущей статье (исследование преобразователя напряжения в ток) мы исследовали использование отрицательной обратной связи в преобразователях напряжения в ток, которые могут точно контролировать яркость светодиода. Если вы знакомы с этими методами, для вас не будет сюрпризом, что для получения стабилизированного тока мы можем использовать стабилизатор напряжения, такой как LT3085.

В данной статье мы рассмотрим простой светодиодный драйвер на базе LT3085.

Линейный стабилизатор против операционного усилителя

Прежде чем мы проанализируем саму схему, мы должны обсудить преимущества подхода с линейным стабилизатором для получения стабилизированного тока. Методы с операционным усилителем, представленные в предыдущих статьях, несомненно, эффективны, так зачем возиться с новым методом?

Вот некоторые моменты, которые следует учитывать:

  • Большинство операционных усилителей не рассчитано на высокий выходной ток, поэтому схема на основе линейного стабилизатора позволяет избежать ограничений по выходному току типовых операционных усилителей.
  • Микросхема стабилизатора имеют защиту от перегрева.
  • Линейные стабилизаторы обеспечивают бо́льшую устойчивость к большим входным напряжениям и высокой рассеиваемой мощности.
  • Возможно, вы сможете найти один компонент, который подойдет практически для всех ваших требований по стабилизации напряжения и получения тока. Моим наименее любимым аспектом проектирования схем/печатных плат является создание запасов новых компонентов, поэтому я стараюсь использовать детали, которые могут пригодиться для будущих проектов.

LT3085 как стабилизатор напряжения

Давайте вкратце рассмотрим работу стабилизации напряжения LT3085. Эта информация поможет нам понять реализацию источника тока.

Ниже типовая конфигурация стабилизатора напряжения:

Рисунок 3 – Схема взята из технического описания LT3085

Источник тока (10 мкА) создает напряжение на Rнастр. Это напряжение появляется на неинвертирующем входе усилителя. Действие отрицательной обратной связи гарантирует, что напряжение на инвертирующем входе равно напряжению на неинвертирующем входе; другими словами, выходное напряжение равно напряжению на Rнастр. Выходной конденсатор необходим для обеспечения стабильности, а транзистор, подключенный к выходу усилителя, будет выглядеть очень знакомым, если вы читали мою статью «Как буферизовать выход операционного усилителя для получения более высокого тока».

От напряжения к току

Назначение стабилизатора напряжения – обеспечить неизменное выходное напряжение независимо от сопротивления нагрузки. Другими словами, идеальный стабилизатор будет выдавать напряжение, которое (например) равно 3,3 В при подключении к нагрузке 100 кОм и ровно 3,3 В при подключении к нагрузке 5 Ом. Что, конечно, меняется, так это ток нагрузки, который полностью определяется сопротивлением нагрузки (потому что напряжение на нагрузке не изменяется).

Что же произойдет, если мы дадим идеальному стабилизатору напряжения фиксированное сопротивление нагрузки? Если напряжение нагрузки не меняется и сопротивление нагрузки не меняется, и если закон Ома всё еще действует, то ток тоже не изменится.

Вуаля: источник тока.

На следующей диаграмме показано, как использовать LT3085 для решения задач, связанных с управлением светодиодами.

Рисунок 4 – Схема взята из технического описания LT3085

Вот как это работает:

  • Внутренний источник тока посылает 10 мкА через R1, генерируя напряжение, которое будет равно выходному напряжению (т.е. напряжению на R2).
  • Это выходное напряжение постоянно (потому что сопротивление R1 и значение силы тока внутреннего источника тока постоянны).
  • Это постоянное выходное напряжение будет создавать неизменный ток через R2, потому что сопротивление R2 постоянно.
  • Инвертирующий вход усилителя не выдает ток, поэтому почти весь ток R2 идет от положительного источника питания через транзистор, подключенный к выходу усилителя. (Я говорю «почти», потому что ток эмиттера биполярного транзистора представляет собой сумму тока базы и тока коллектора, но ток базы намного меньше тока коллектора.)
  • Светодиод включен последовательно с коллектором биполярного транзистора, и поэтому ток через светодиод фиксирован и (почти) равен току, протекающему через R2.

Ток через светодиод можно изменить, изменив значение R1 или R2; как показано в следующем уравнении, ток через светодиод – это просто значение силы тока внутреннего источника тока, умноженное на отношение R1 к R2.

\[I_{LED}=\frac{((10 \ мкА)\times R1)}{R2}=10 \ мкА \times \frac{R1}{R2}\]

Я бы назвал это довольно удобной схемой: процесс проектирования чрезвычайно прост, и требуется лишь несколько компонентов. Если вы замените один из резисторов потенциометром, результатом станет высокоточный светодиодный драйвер с регулируемым током с широким диапазоном входных напряжений и защитой от перегрева, который может обеспечивать ток до 500 мА.

И, конечно, эта схема не ограничивается светодиодами; вы могли бы так же легко использовать ее, скажем, с резистивным нагревательным элементом. Это позволит вам, несмотря на колебания напряжения питания, генерировать постоянное тепло (потому что P = I2R).

Заключение

Мы обсудили простой, но высокопроизводительный источник тока на базе микросхемы стабилизатора напряжения от Linear Tech. Я предполагаю, что аналогичные схемы на стабилизаторах доступны и у других производителей.

Мне нравится всегда включать моделирование SPICE в статьи, но в данном случае это казалось действительно ненужным. Однако прежде чем я написал статью, я проверил, что в LTspice действительно есть компонент LT3085 (в папке «[PowerProducts]«). Поэтому, если вы захотите исследовать эту схему дальше, то сможете легко это сделать.

Оригинал статьи:

Теги

LED / СветодиодLED драйвер / Светодиодный драйверЛинейный стабилизаторСтабилизатор напряженияСтабилизатор токаСтабилизация токаСхемотехника

Сохранить или поделиться

Что такое стабилизатор напряжения и как он работает? Типы стабилизаторов

Что такое стабилизатор напряжения и зачем он нам? Работа стабилизатора, типы и применение

Введение в стабилизатор:

Внедрение технологии микропроцессорных микросхем и силовых электронных устройств в конструкцию интеллектуальных стабилизаторов напряжения переменного тока (или автоматических регуляторов напряжения (AVR)) привело к -качественное, стабильное электроснабжение при значительных и продолжительных отклонениях сетевого напряжения.

В качестве усовершенствования традиционных стабилизаторов напряжения релейного типа в современных инновационных стабилизаторах используются высокопроизводительные цифровые схемы управления и полупроводниковые схемы управления, которые исключают регулировку потенциометра и позволяют пользователю устанавливать требования к напряжению с помощью клавиатуры с возможностью запуска и остановки выхода.

Это также привело к тому, что время срабатывания стабилизаторов или чувствительность стабилизаторов были очень низкими, обычно менее нескольких миллисекунд, кроме того, это можно регулировать с помощью переменной настройки.В настоящее время стабилизаторы стали оптимизированным решением для питания многих электронных устройств, чувствительных к колебаниям напряжения, и они нашли работу со многими устройствами, такими как станки с ЧПУ, кондиционеры, телевизоры, медицинское оборудование, компьютеры, телекоммуникационное оборудование и т. Д.

Что такое стабилизатор напряжения?

Это электрический прибор, который разработан так, что обеспечивает подачу постоянного напряжения на нагрузку на своих выходных клеммах независимо от изменений входного или входящего напряжения питания.Он защищает оборудование или машину от перенапряжения, пониженного напряжения и других скачков напряжения.

Также называется автоматический регулятор напряжения (АРН) . Стабилизаторы напряжения предпочтительны для дорогостоящего и драгоценного электрического оборудования, поскольку они защищают его от вредных колебаний низкого / высокого напряжения. Некоторое из этого оборудования — кондиционеры, офсетные печатные машины, лабораторное оборудование, промышленные машины и медицинское оборудование.

Стабилизаторы напряжения регулируют колебания входного напряжения до того, как оно может быть подано на нагрузку (или оборудование, чувствительное к колебаниям напряжения).Выходное напряжение стабилизатора будет оставаться в диапазоне 220 В или 230 В в случае однофазного питания и 380 В или 400 В в случае трехфазного питания в пределах заданного диапазона колебаний входного напряжения. Это регулирование осуществляется с помощью понижающих и повышающих операций, выполняемых внутренней схемой.

На современном рынке доступно огромное количество разнообразных автоматических регуляторов напряжения. Это могут быть одно- или трехфазные блоки в зависимости от типа применения и необходимой мощности (кВА).Трехфазные стабилизаторы выпускаются в двух версиях: модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они доступны либо в виде отдельных блоков для бытовых приборов, либо в виде больших стабилизаторов для целых приборов в определенном месте, например, во всем доме. Кроме того, это могут быть стабилизаторы аналогового или цифрового типа.

К распространенным типам стабилизаторов напряжения относятся стабилизаторы с ручным управлением или с переключением, автоматические стабилизаторы релейного типа, твердотельные или статические стабилизаторы и стабилизаторы с сервоуправлением.В дополнение к функции стабилизации большинство стабилизаторов имеют дополнительные функции, такие как отсечка низкого напряжения на входе / выходе, отсечка высокого напряжения на входе / выходе, отсечка при перегрузке, возможность запуска и остановки выхода, ручной / автоматический запуск, отображение отсечки напряжения, переключение при нулевом напряжении. и др.

Зачем нужны стабилизаторы напряжения?

Как правило, каждое электрическое оборудование или устройство рассчитано на широкий диапазон входного напряжения. В зависимости от чувствительности рабочий диапазон оборудования ограничен определенными значениями, например, одно оборудование может выдерживать ± 10 процентов номинального напряжения, а другое — ± 5 процентов или меньше.

Колебания напряжения (повышение или понижение величины номинального напряжения) довольно часто встречаются во многих областях, особенно на оконечных линиях. Наиболее частые причины колебаний напряжения — это освещение, неисправности электрооборудования, неисправная проводка и периодическое отключение устройства. Эти колебания приводят к поломке электрического оборудования или приборов.

Результатом длительного перенапряжения

  • Необратимое повреждение оборудования
  • Повреждение изоляции обмоток
  • Нежелательное прерывание нагрузки
  • Повышенные потери в кабелях и сопутствующем оборудовании
  • Снижение срока службы устройства

Длительное понижение напряжения приведет к

  • Неисправность оборудования
  • Более длительные периоды работы (как в случае резистивных нагревателей)
  • Снижение производительности оборудования
  • Вытягивание больших токов, которые в дальнейшем приводят к перегреву
  • Ошибки вычислений
  • Пониженная частота вращения двигателей

Таким образом, стабильность и точность напряжения определяют правильную работу оборудования.Таким образом, стабилизаторы напряжения гарантируют, что колебания напряжения на входящем источнике питания не влияют на нагрузку или электрический прибор.

Как работает стабилизатор напряжения?

Основной принцип работы стабилизатора напряжения для выполнения операций понижения и повышения

В стабилизаторе напряжения коррекция напряжения при повышенном и пониженном напряжении выполняется посредством двух основных операций, а именно: b oost и понижающих операций . Эти операции могут выполняться вручную с помощью переключателей или автоматически с помощью электронных схем.В условиях пониженного напряжения режим повышения напряжения увеличивает напряжение до номинального уровня, в то время как понижающий режим снижает уровень напряжения во время состояния повышенного напряжения.

Концепция стабилизации включает в себя добавление или вычитание напряжения от сети. Для выполнения такой задачи в стабилизаторе используется трансформатор, который в различных конфигурациях соединен с переключающими реле. В некоторых стабилизаторах используется трансформатор с отводами на обмотке для обеспечения различных коррекций напряжения, в то время как в сервостабилизаторах используется автотрансформатор для обеспечения широкого диапазона коррекции.

Чтобы понять эту концепцию, давайте рассмотрим простой понижающий трансформатор с номиналом 230 / 12В, и его связь с этими операциями приведена ниже.

На рисунке выше показана конфигурация повышения, в которой полярность вторичной обмотки ориентирована таким образом, что ее напряжение добавляется непосредственно к первичному напряжению. Следовательно, в случае пониженного напряжения трансформатор (будь то переключение ответвлений или автотрансформатор) переключается с помощью реле или твердотельных переключателей, так что к входному напряжению добавляются дополнительные вольт.

На приведенном выше рисунке трансформатор подключен в компенсирующей конфигурации, в которой полярность вторичной катушки ориентирована таким образом, что ее напряжение вычитается из первичного напряжения. Схема переключения переключает соединение с нагрузкой в ​​эту конфигурацию во время состояния перенапряжения.

На рисунке выше показан двухступенчатый стабилизатор напряжения, в котором используются два реле для обеспечения постоянного переменного тока на нагрузку во время перенапряжения и в условиях напряжения. Путем переключения реле могут выполняться операции понижения и повышения напряжения для двух конкретных колебаний напряжения (одно находится под напряжением, например, 195 В, а другое — при повышенном напряжении, например, 245 В).

В случае стабилизаторов ответвительного трансформаторного типа, различные ответвления переключаются в зависимости от требуемой величины повышающего или понижающего напряжения. Но в случае стабилизаторов типа автотрансформатора двигатели (серводвигатель) используются вместе со скользящим контактом для получения повышающего или понижающего напряжения от автотрансформатора, поскольку он содержит только одну обмотку.

Типы стабилизаторов напряжения

Стабилизаторы напряжения стали неотъемлемой частью многих бытовых, промышленных и коммерческих электроприборов.Раньше использовались ручные или переключаемые стабилизаторы напряжения для повышения или понижения входящего напряжения, чтобы обеспечить выходное напряжение в желаемом диапазоне. Такие стабилизаторы построены с электромеханическими реле в качестве переключающих устройств.

Позже, дополнительная электронная схема автоматизирует процесс стабилизации, и на свет появились автоматические регуляторы напряжения для переключателей ответвлений. Другой популярный тип стабилизатора напряжения — сервостабилизатор, в котором коррекция напряжения осуществляется непрерывно без какого-либо переключателя.Обсудим три основных типа стабилизаторов напряжения.

Стабилизаторы напряжения релейного типа

В стабилизаторах напряжения этого типа регулирование напряжения осуществляется переключением реле таким образом, чтобы одно из нескольких ответвлений трансформатора подключалось к нагрузке (как описано выше) независимо от того, он предназначен для работы в режиме наддува или противодействия. На рисунке ниже показана внутренняя схема стабилизатора релейного типа.

Он имеет электронную схему и набор реле помимо трансформатора (который может быть тороидальным или трансформатором с железным сердечником с выводами на его вторичной обмотке).Электронная схема включает схему выпрямителя, операционный усилитель, микроконтроллер и другие крошечные компоненты.

Электронная схема сравнивает выходное напряжение с эталонным значением, обеспечиваемым встроенным источником эталонного напряжения. Каждый раз, когда напряжение повышается или опускается за пределы опорного значения, схема управления переключает соответствующее реле для подключения к выходу требуемого ответвления.

Эти стабилизаторы обычно изменяют напряжение при колебаниях входного напряжения от ± 15 процентов до ± 6 процентов с точностью выходного напряжения от ± 5 до ± 10 процентов.Этот тип стабилизаторов наиболее часто используется для низкоуровневых устройств в жилых, коммерческих и промышленных помещениях, поскольку они имеют малый вес и невысокую стоимость. Однако они страдают рядом ограничений, таких как низкая скорость коррекции напряжения, меньшая долговечность, меньшая надежность, прерывание цепи питания во время регулирования и неспособность выдерживать высокие скачки напряжения.

Стабилизаторы напряжения с сервоуправлением

Их просто называют сервостабилизаторами (работа с сервомеханизмом, который также известен как отрицательная обратная связь), и название предполагает, что он использует серводвигатель для коррекции напряжения.Они в основном используются для обеспечения высокой точности выходного напряжения, обычно ± 1% при изменении входного напряжения до ± 50%. На рисунке ниже показана внутренняя схема сервостабилизатора, который включает в себя серводвигатель, автотрансформатор, понижающий повышающий трансформатор, драйвер двигателя и схему управления в качестве основных компонентов.

В этом стабилизаторе один конец первичной обмотки понижающего повышающего трансформатора подключен к фиксированному отводу автотрансформатора, а другой конец подключен к подвижному рычагу, который управляется серводвигателем.Вторичная обмотка понижающего повышающего трансформатора подключена последовательно к входящему источнику питания, который является не чем иным, как выходом стабилизатора.

Электронная схема управления обнаруживает провал и рост напряжения путем сравнения входного сигнала со встроенным источником опорного напряжения. Когда схема обнаруживает ошибку, она приводит в действие двигатель, который, в свою очередь, перемещает рычаг автотрансформатора. Он может питать первичную обмотку повышающего трансформатора, так что напряжение на вторичной обмотке должно быть желаемым выходным напряжением.Большинство сервостабилизаторов используют встроенный микроконтроллер или процессор для схемы управления для достижения интеллектуального управления.

Эти стабилизаторы могут быть однофазными, трехфазными симметричными или трехфазными несимметричными. В однофазном исполнении серводвигатель, соединенный с регулируемым трансформатором, обеспечивает коррекцию напряжения. В случае трехфазного симметричного типа серводвигатель соединен с тремя автотрансформаторами, так что стабилизированный выход обеспечивается во время колебаний путем регулировки выхода трансформаторов.В несбалансированном типе сервостабилизаторов три независимых серводвигателя соединены с тремя автотрансформаторами и имеют три отдельные цепи управления.

Сервостабилизаторы имеют ряд преимуществ по сравнению со стабилизаторами релейного типа. Некоторые из них — более высокая скорость коррекции, высокая точность стабилизированного выхода, способность выдерживать броски тока и высокая надежность. Однако они требуют периодического обслуживания из-за наличия двигателей.

Стабилизаторы статического напряжения

Как следует из названия, стабилизатор статического напряжения не имеет движущихся частей, как механизм серводвигателя в случае сервостабилизаторов.Он использует схему силового электронного преобразователя для стабилизации напряжения, а не вариацию в случае обычных стабилизаторов. С помощью этих стабилизаторов можно добиться большей точности и отличного регулирования напряжения по сравнению с сервостабилизаторами, и обычно регулирование составляет ± 1 процент.

По сути, он состоит из повышающего трансформатора, преобразователя мощности IGBT (или преобразователя переменного тока в переменный) и микроконтроллера, микропроцессора или контроллера на базе DSP. Управляемый микропроцессором преобразователь IGBT генерирует соответствующее количество напряжения с помощью метода широтно-импульсной модуляции, и это напряжение подается на первичную обмотку повышающего трансформатора.Преобразователь IGBT вырабатывает напряжение таким образом, чтобы оно могло быть синфазным или сдвинутым на 180 градусов по фазе входящего линейного напряжения, чтобы выполнять сложение и вычитание напряжений во время колебаний.

Каждый раз, когда микропроцессор обнаруживает провал напряжения, он отправляет импульсы ШИМ на преобразователь IGBT, так что он генерирует напряжение, равное величине отклонения от номинального значения. Этот выход находится в фазе с входящим питанием и подается на первичную обмотку повышающего трансформатора.Поскольку вторичная обмотка подключена к входящей линии, индуцированное напряжение будет добавлено к входящему источнику питания, и это скорректированное напряжение будет подаваться на нагрузку.

Точно так же повышение напряжения заставляет схему микропроцессора посылать импульсы ШИМ таким образом, что преобразователь выводит напряжение с отклоненной величиной, которое на 180 градусов не совпадает по фазе с входящим напряжением. Это напряжение на вторичной обмотке понижающего вольтодобавочного трансформатора вычитается из входного напряжения, так что выполняется понижающая операция.

Эти стабилизаторы очень популярны по сравнению со стабилизаторами с переключением отводов и сервоуправляемыми стабилизаторами из-за большого количества преимуществ, таких как компактный размер, очень быстрая скорость коррекции, отличное регулирование напряжения, отсутствие обслуживания из-за отсутствия движущихся частей, высокий КПД и высокий КПД. надежность.

Разница между стабилизатором напряжения и регулятором напряжения

Здесь возникает серьезный, но сбивающий с толку вопрос: какова именно разница (я) в между стабилизатором и регулятором ? Хорошо.. Оба выполняют одно и то же действие, которое заключается в стабилизации напряжения, но основная разница между стабилизатором напряжения и регулятором напряжения составляет :

Стабилизатор напряжения: Это устройство или схема, которые предназначены для подачи постоянного напряжения на выход без изменений. по входящему напряжению.

Регулятор напряжения: Это устройство или схема, предназначенная для подачи постоянного напряжения на выход без изменения тока нагрузки.

Как выбрать стабилизатор напряжения правильного размера?

Прежде всего, необходимо учесть несколько факторов, прежде чем покупать стабилизатор напряжения для прибора.Эти факторы включают в себя мощность, требуемую для устройства, уровень колебаний напряжения, которые возникают в зоне установки, тип устройства, тип стабилизатора, рабочий диапазон стабилизатора (на который стабилизатор подает правильное напряжение), отключение по перенапряжению / пониженному напряжению, тип схема управления, тип монтажа и другие факторы. Здесь мы привели основные шаги, которые следует учитывать перед покупкой стабилизатора для вашего приложения.

  • Проверьте номинальную мощность устройства, которое вы собираетесь использовать со стабилизатором, наблюдая за деталями паспортной таблички (вот образцы: паспортная табличка трансформатора, паспортная табличка MCB, паспортная табличка конденсатора и т. Д.) Или из руководства пользователя продукта.
  • Поскольку стабилизаторы рассчитаны на кВА (как и у трансформатора, рассчитанные на кВА, а не на кВт), также можно рассчитать мощность, просто умножив напряжение прибора на максимальный номинальный ток.
  • Рекомендуется добавить запас прочности к номиналу стабилизатора, обычно 20-25 процентов. Это может быть полезно для будущих планов по добавлению дополнительных устройств к выходу стабилизатора.
  • Если прибор рассчитан в ваттах, учитывайте коэффициент мощности при расчете номинальной мощности стабилизатора в кВА.Напротив, если стабилизаторы рассчитаны в кВт, а не в кВА, умножьте коэффициент мощности на произведение напряжения и тока.

ниже — это живой и решенный пример, что , как выбрать стабилизатор напряжения подходящего размера для вашего электроприбора

Предположим, если прибор (кондиционер или холодильник) рассчитан на 1 кВА. Следовательно, безопасный запас в 20 процентов составляет 200 Вт. Прибавив эти ватты к фактическому номиналу, мы получим мощность 1200 ВА. Поэтому для устройства предпочтительнее стабилизатор на 1,2 кВА или 1200 ВА.Для домашних нужд предпочтительны стабилизаторы от 200 ВА до 10 кВА. А для коммерческих и промышленных применений используются одно- и трехфазные стабилизаторы большой мощности.

Надеемся, что представленная информация будет информативной и полезной для читателя. Мы хотим, чтобы читатели выразили свое мнение по этой теме и ответили на этот простой вопрос — какова цель функции связи RS232 / RS485 в современных стабилизаторах напряжения — в разделе комментариев ниже.

Что такое стабилизатор напряжения — зачем он нам, как он работает, типы и области применения

Применение стабилизаторов напряжения стало необходимостью для каждого дома.Теперь доступны разные типы стабилизаторов напряжения с разным функционалом и работой. Последние достижения в области технологий, такие как микропроцессорные микросхемы и силовые электронные устройства, изменили наш взгляд на стабилизатор напряжения. Теперь они полностью автоматические, интеллектуальные и снабжены множеством дополнительных функций. Они также обладают сверхбыстрой реакцией на колебания напряжения и позволяют пользователям дистанционно регулировать требования к напряжению, включая функцию пуска / останова для выхода.

Что такое стабилизатор напряжения?

Стабилизатор напряжения — это электрическое устройство, которое используется для обеспечения постоянного выходного напряжения на нагрузке на ее выходных клеммах независимо от любых изменений / колебаний на входе, то есть входящем питании.

Основная цель стабилизатора напряжения — защитить электрические / электронные устройства (например, кондиционер, холодильник, телевизор и т. Д.) От возможных повреждений из-за скачков / колебаний напряжения, перенапряжения и пониженного напряжения.

Рис. 1. Различные типы стабилизаторов напряжения

Стабилизатор напряжения также известен как AVR (автоматический регулятор напряжения). Использование стабилизатора напряжения не ограничивается домашним / офисным оборудованием, на которое подается питание извне. Даже корабли, которые имеют собственное внутреннее устройство электроснабжения в виде дизельных генераторов, сильно зависят от этих АРН в плане безопасности своего оборудования.

Мы можем видеть различные типы стабилизаторов напряжения, доступные на рынке.Как аналоговые, так и цифровые автоматические стабилизаторы напряжения доступны от многих производителей. Благодаря растущей конкуренции и растущему вниманию к устройствам безопасности. Эти стабилизаторы напряжения могут быть однофазными (выход 220–230 вольт) или трехфазными (выход 380/400 вольт) в зависимости от типа приложения. Регулировка желаемого стабилизированного выхода выполняется методом понижающего и повышающего напряжения в соответствии с его внутренней схемой. Трехфазные стабилизаторы напряжения доступны в двух разных моделях i.е. Модели со сбалансированной нагрузкой и модели с несбалансированной нагрузкой.

Они также доступны в различных номиналах и диапазонах кВА. Стабилизатор напряжения нормального диапазона может обеспечить стабилизированное выходное напряжение 200-240 вольт с повышающим понижающим напряжением 20-35 вольт от источника входного напряжения в диапазоне от 180 до 270 вольт. Принимая во внимание, что стабилизатор напряжения широкого диапазона может обеспечить стабилизированное выходное напряжение 190-240 вольт с повышающим понижающим напряжением 50-55 вольт при входном напряжении от 140 до 300 вольт.

Они также доступны для широкого спектра применений, таких как специальные стабилизаторы напряжения для небольших устройств, таких как телевизор, холодильник, микроволновая печь, до одного огромного устройства для всей бытовой техники.

В дополнение к своей основной функции стабилизации, стабилизаторы текущего напряжения имеют множество полезных дополнительных функций, таких как защита от перегрузки, переключение при нулевом напряжении, защита от изменения частоты, отображение отключения напряжения, возможность запуска и остановки выхода, ручной / автоматический запуск, отключение напряжения. и т. д.

Стабилизаторы напряжения — это устройства с очень высокой энергоэффективностью (с КПД 95-98%). Они потребляют очень мало энергии, которая обычно составляет от 2 до 5% от максимальной нагрузки.

Зачем нужны стабилизаторы напряжения? — Его важность

Все электрические / электронные устройства спроектированы и изготовлены для работы с максимальной эффективностью при стандартном напряжении питания, известном как номинальное рабочее напряжение.В зависимости от установленного безопасного рабочего предела рабочий диапазон (с оптимальным КПД) электрического / электронного устройства может быть ограничен до ± 5%, ± 10% или более.

Из-за многих проблем входное напряжение, которое мы получаем, всегда имеет тенденцию к колебаниям, что приводит к постоянно меняющимся входным напряжениям. Это изменяющееся напряжение является основным фактором, способствующим снижению эффективности устройства, а также увеличению частоты его отказов.

Рис. 2 — Проблемы, связанные с колебаниями напряжения

Помните, нет ничего важнее для электрического / электронного устройства, чем фильтрованная, защищенная и стабильная подача питания.Правильный и стабильный источник напряжения очень необходим для того, чтобы устройство выполняло свои функции наиболее оптимальным образом. Это стабилизатор напряжения, который гарантирует, что устройство получит желаемое и стабилизированное напряжение независимо от того, насколько велики колебания. Таким образом, стабилизатор напряжения — очень эффективное решение для всех, кто хочет получить оптимальную производительность и защитить свои устройства от этих непредсказуемых колебаний напряжения, скачков напряжения и шума, присутствующих в источнике питания.

Как и ИБП, стабилизаторы напряжения также используются для защиты электрического и электронного оборудования.Колебания напряжения очень распространены независимо от того, где вы живете. Колебания напряжения могут быть вызваны различными причинами, такими как электрические неисправности, неисправная проводка, молнии, короткие замыкания и т. Д. Эти колебания могут иметь форму повышенного или пониженного напряжения.

Влияние постоянного / повторяющегося перенапряжения на бытовую технику

  • Это может привести к необратимому повреждению подключенного устройства.
  • Это может привести к повреждению изоляции обмотки.
  • Это может привести к ненужному отключению нагрузки.
  • Это может привести к перегреву кабеля или устройства.
  • Это может снизить срок службы устройства.

Влияние постоянного / повторяющегося пониженного напряжения на бытовую технику

  • Это может привести к неисправности оборудования.
  • Это может привести к низкой эффективности устройства.
  • В некоторых случаях устройству может потребоваться дополнительное время для выполнения той же функции.
  • Это может снизить производительность устройства.
  • Это может привести к тому, что устройство будет потреблять большие токи, что в дальнейшем может вызвать перегрев.

Как работает стабилизатор напряжения? — Принцип работы понижающего и повышающего режима

Основная работа стабилизатора напряжения заключается в выполнении двух необходимых функций: i.е. Функция Buck и Boost. Функция понижающего и повышающего напряжения — это не что иное, как регулирование постоянного напряжения от перенапряжения и пониженного напряжения. Эта функция понижения и повышения может выполняться вручную с помощью переключателей или автоматически с помощью дополнительных электронных схем.

Рис. 3 — Основная функция стабилизатора напряжения

В условиях перенапряжения функция понижающего напряжения обеспечивает необходимое снижение интенсивности напряжения.Точно так же в условиях пониженного напряжения функция Boost увеличивает интенсивность напряжения. Идея обеих функций в целом состоит в том, чтобы поддерживать одинаковое выходное напряжение.

Стабилизация напряжения включает добавление или вычитание напряжения из первичного источника напряжения. Для выполнения этой функции в стабилизаторах напряжения используется трансформатор, который подключается к переключающим реле в различных требуемых конфигурациях. В некоторых стабилизаторах напряжения используется трансформатор, имеющий различные ответвления на обмотке для обеспечения различных корректировок напряжения, в то время как несколько стабилизаторов напряжения (например, серво стабилизатор напряжения) содержат автотрансформатор для обеспечения желаемого диапазона коррекции.

Как работают функции понижения и повышения в стабилизаторе напряжения

Чтобы лучше понять обе концепции, мы разделим их на отдельные функции.

Понижающая функция в стабилизаторе напряжения

Рис. 4 — Принципиальная схема понижающей функции в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в понижающей функции. В функции Buck полярность вторичной катушки трансформатора подключается таким образом, что приложенное к нагрузке напряжение является результатом вычитания напряжения первичной и вторичной катушек.

Рис. 5 — Вычитание напряжения в понижающей функции стабилизатора напряжения

В стабилизаторе напряжения имеется схема переключения. Каждый раз, когда он обнаруживает перенапряжение в первичном источнике питания, подключение нагрузки вручную / автоматически переключается в конфигурацию «понижающего» режима с помощью переключателей / реле.

Функция повышения в стабилизаторе напряжения

Рис. 6 — Принципиальная схема функции повышения в стабилизаторе напряжения

На приведенном выше рисунке показано подключение трансформатора в режиме «Boost».В функции Boost полярность вторичной катушки трансформатора подключается таким образом, что приложенное к нагрузке напряжение является результатом сложения напряжения первичной и вторичной катушек.

Рис. 7 — Сумма напряжения в функции повышения стабилизатора напряжения

Как автоматически работает конфигурация понижающего и повышающего напряжения?

Вот пример стабилизатора напряжения 02 ступени. В этом стабилизаторе напряжения используются реле 02 (реле 1 и реле 2) для обеспечения стабилизированного источника питания переменного тока для нагрузки во время повышенного и пониженного напряжения.

Рис. 8 — Принципиальная схема для автоматической функции понижения и повышения в стабилизаторе напряжения

На принципиальной схеме двухступенчатого стабилизатора напряжения (изображенного выше) реле 1 и реле 2 используются для обеспечения конфигураций понижающего и повышающего напряжения. при различных обстоятельствах колебания напряжения, т. е. перенапряжения и пониженного напряжения. Например — Предположим, что вход переменного тока — 230 В переменного тока, а требуемый выход — также постоянный 230 В переменного тока. Теперь, если у вас есть +/- 25 Вольт понижающая и повышающая стабилизация, это означает, что ваш стабилизатор напряжения может обеспечить вам постоянное желаемое напряжение (230 вольт) в диапазоне от 205 вольт (пониженное напряжение) до 255 вольт (повышенное напряжение) входного источника переменного тока. .

В стабилизаторах напряжения, в которых используются ответвительные трансформаторы, точки ответвления выбираются на основе требуемой величины напряжения для понижения или повышения. В этом случае у нас есть разные диапазоны напряжения на выбор. Принимая во внимание, что в стабилизаторах напряжения, которые используют автотрансформаторы, серводвигатели вместе со скользящими контактами используются для получения необходимого количества напряжения для понижения или повышения. Скользящий контакт необходим, поскольку автотрансформаторы имеют только одну обмотку.

Различные типы стабилизаторов напряжения

Первоначально на рынке появились стабилизаторы напряжения с ручным управлением / переключателем.В стабилизаторах этого типа используются электромеханические реле для выбора желаемого напряжения. С развитием технологий появились дополнительные электронные схемы, и стабилизаторы напряжения стали автоматическими. Затем появился стабилизатор напряжения на основе сервопривода, который способен непрерывно стабилизировать напряжение без какого-либо ручного вмешательства. Теперь также доступны стабилизаторы напряжения на базе микросхем / микроконтроллеров, которые также могут выполнять дополнительные функции.

Стабилизаторы напряжения можно условно разделить на три типа.Это:

  • Стабилизаторы напряжения релейного типа
  • Стабилизаторы напряжения на основе сервопривода
  • Стабилизаторы статического напряжения

Стабилизаторы напряжения релейного типа

В стабилизаторах напряжения релейного типа напряжение регулируется переключающими реле. Реле используются для подключения вторичного трансформатора (ов) в различных конфигурациях для достижения функции Buck & Boost.

Как работает стабилизатор напряжения релейного типа?

Фиг.9 — Внутренний вид стабилизатора напряжения релейного типа

На рисунке выше показано, как стабилизатор напряжения релейного типа выглядит изнутри. Он имеет трансформатор с ответвлениями, реле и электронную плату. Печатная плата содержит схему выпрямителя, усилитель, блок микроконтроллера и другие вспомогательные компоненты.

Электронная плата выполняет сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает какое-либо повышение или понижение входного напряжения сверх эталонного значения, он переключает соответствующее реле для подключения необходимого ответвления для функции понижения / повышения.

Стабилизаторы напряжения релейного типа обычно стабилизируют входные колебания на уровне ± 15% с точностью на выходе от ± 5% до ± 10%.

Использование / преимущества стабилизаторов напряжения релейного типа

Этот стабилизатор в основном используется для приборов / оборудования малой мощности в жилых / коммерческих / промышленных помещениях.

  • Стоят дешевле.
  • Они компактны по размеру.
Ограничения стабилизаторов напряжения релейного типа
  • Их реакция на колебания напряжения немного медленная по сравнению с другими типами стабилизаторов напряжения
  • Они менее долговечны
  • Они менее надежны
  • Они не могут выдерживать высокие скачки напряжения из-за меньшего предела толерантности к колебаниям.
  • При стабилизации напряжения, изменение тракта питания может привести к незначительному прерыванию подачи питания.

Стабилизаторы напряжения на основе сервоприводов

В стабилизаторах напряжения на основе сервоприводов регулирование напряжения осуществляется с помощью серводвигателя. Они также известны как сервостабилизаторы. Это системы с замкнутым контуром.

Как работает стабилизатор напряжения на сервоприводе?

В системе с замкнутым контуром отрицательная обратная связь (также известная как подача ошибок) гарантируется с выхода, так что система может гарантировать, что желаемый выход был достигнут.Это делается путем сравнения выходных и входных сигналов. Если в случае, если желаемый выход больше / ниже требуемого значения, то сигнал ошибки (Выходное значение — Входное значение) будет получен регулятором источника входного сигнала. Затем этот регулятор снова будет генерировать сигнал (положительный или отрицательный в зависимости от достигнутого выходного значения) и подавать его на исполнительные механизмы, чтобы привести выход к точному значению.

Благодаря свойству замкнутого контура, стабилизаторы напряжения на основе сервоприводов используются в устройствах / оборудовании, которые очень чувствительны и нуждаются в точном входном источнике питания (± 01%) для выполнения намеченных функций.

Рис. 10 — Внутренний вид стабилизатора напряжения на сервоприводе

На приведенном выше рисунке показано, как стабилизатор напряжения на сервоприводе выглядит изнутри. Он имеет серводвигатель, автотрансформатор, понижающий и повышающий трансформатор, двигатель, электронную плату и другие вспомогательные компоненты.

В стабилизаторе напряжения на основе сервопривода один конец первичной обмотки понижающего и повышающего трансформатора (ответвлений) подключен к фиксированному ответвлению автотрансформатора, а другой конец первичной обмотки соединен с подвижным рычагом. который управляется серводвигателем.Один конец вторичной катушки понижающего и повышающего трансформатора подключен к входному источнику питания, а другой конец — к выходу стабилизатора напряжения.

Рис. 11- Принципиальная схема серво стабилизатора напряжения

Электронная плата выполняет сравнение выходного напряжения с источником опорного напряжения. Как только он обнаруживает какое-либо повышение или понижение входного напряжения сверх эталонного значения, он запускает двигатель, который далее перемещает плечо на автотрансформаторе.

По мере движения плеча автотрансформатора входное напряжение первичной обмотки понижающего и повышающего трансформатора изменится на требуемое выходное напряжение. Серводвигатель будет продолжать вращаться до тех пор, пока разница между значением опорного напряжения и выходным сигналом стабилизатора не станет равной нулю. Этот полный процесс происходит за миллисекунды. Сегодняшние стабилизаторы напряжения на основе сервоприводов поставляются со схемой управления на основе микроконтроллера / микропроцессора, чтобы обеспечить интеллектуальное управление для пользователей.

Различные типы стабилизаторов напряжения на основе сервоприводов

Различные типы стабилизаторов напряжения на основе сервоприводов: серводвигатель, подключенный к регулируемому трансформатору.

Трехфазные стабилизаторы напряжения сбалансированного типа с сервоприводом

В трехфазных стабилизаторах напряжения сбалансированного типа с сервоприводом стабилизация напряжения достигается с помощью серводвигателя, подключенного к автотрансформаторам 03 и общей цепи управления. Мощность автотрансформаторов варьируется для достижения стабилизации.

Трехфазные несимметричные стабилизаторы напряжения на сервоприводах

В трехфазных несимметричных сервоприводах стабилизаторы напряжения стабилизация напряжения достигается с помощью серводвигателя, подключенного к 03 автотрансформаторам и 03 независимым цепям управления (по одной для каждой автотрансформатор).

Рис. 12 — Внутренний вид трехфазных несимметричных стабилизаторов напряжения с сервоприводом

Использование / преимущества стабилизатора напряжения с сервоприводом
  • Они быстро реагируют на колебания напряжения.
  • Имеют высокую точность стабилизации напряжения.
  • Очень надежны.
  • Выдерживают скачки высокого напряжения.
Ограничения серво стабилизатора напряжения
  • Они нуждаются в периодическом обслуживании.
  • Чтобы устранить ошибку, серводвигатель необходимо выровнять. Для регулировки серводвигателя нужны умелые руки.

Стабилизаторы статического напряжения

Рис. 13 — Стабилизаторы статического напряжения

Выпрямитель статического напряжения не имеет движущихся частей, как в случае стабилизаторов напряжения на основе сервопривода. Он использует схему силового электронного преобразователя для стабилизации напряжения. Эти стабилизаторы статического напряжения имеют очень высокую точность, а стабилизация напряжения находится в пределах ± 1%.

Стабилизатор статического напряжения содержит понижающий и повышающий трансформатор, силовой преобразователь на биполярном транзисторе с изолированным затвором (IGBT), микроконтроллер, микропроцессор и другие важные компоненты.

Рис. 14 — Внутренний вид стабилизатора статического напряжения

Как работает стабилизатор статического напряжения?

Микроконтроллер / микропроцессор управляет преобразователем мощности IGBT для генерирования необходимого уровня напряжения с использованием метода «широтно-импульсной модуляции».В методе «широтно-импульсной модуляции» в импульсных преобразователях мощности используется силовой полупроводниковый переключатель (например, MOSFET) для управления трансформатором с заданным выходным напряжением. Это генерируемое напряжение затем подается на первичную обмотку понижающего и повышающего трансформатора. Преобразователь мощности IGBT также контролирует фазу напряжения. Он может генерировать напряжение, которое может быть синфазным или сдвинутым по фазе на 180 градусов по отношению к входному источнику питания, что, в свою очередь, позволяет ему контролировать, нужно ли добавлять или вычитать напряжение в зависимости от повышения или понижения уровня входного источника питания.

Рис. 15. Принципиальная схема статического стабилизатора напряжения

Как только микропроцессор обнаруживает падение уровня напряжения, он посылает сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT соответственно генерирует напряжение, подобное разнице напряжений, на которую уменьшился входной источник питания. Это генерируемое напряжение синфазно с входным источником питания. Затем это напряжение подается на первичную обмотку понижающего и повышающего трансформатора.Поскольку вторичная катушка понижающего и повышающего трансформатора подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, будет добавлено к входному источнику питания. Таким образом, на нагрузку будет подаваться стабилизированное повышенное напряжение.

Аналогичным образом, как только микропроцессор обнаруживает повышение уровня напряжения, он отправляет сигнал широтно-импульсной модуляции на преобразователь мощности IGBT. Преобразователь мощности IGBT соответственно генерирует напряжение, подобное разнице напряжений, на которую уменьшился входной источник питания.Но на этот раз генерируемое напряжение будет сдвинуто по фазе на 180 градусов по отношению к входному источнику питания. Затем это напряжение подается на первичную обмотку понижающего и повышающего трансформатора. Поскольку вторичная катушка понижающего и повышающего трансформатора подключена к входному источнику питания, напряжение, наведенное во вторичной катушке, теперь будет вычитаться из входного источника питания. Таким образом, на нагрузку будет подаваться стабилизированное пониженное напряжение.

Использование / преимущества статических стабилизаторов напряжения
  • Они очень компактны по размеру.
  • Они очень быстро реагируют на колебания напряжения.
  • Обладают очень высокой точностью стабилизации напряжения.
  • Поскольку движущаяся часть отсутствует, обслуживание практически не требуется.
  • Они очень надежные.
  • Их КПД очень высок.
Ограничения статического стабилизатора напряжения

Они дороги по сравнению со своими аналогами.

В чем разница между стабилизатором напряжения и регулятором напряжения?

Хорошо.. оба звучат одинаково. Оба они выполняют одну и ту же функцию стабилизации напряжения. Однако то, как они это делают, приносит разницу. Основное функциональное различие между стабилизатором напряжения и регулятором напряжения:

Стабилизатор напряжения — это устройство, которое подает постоянное напряжение на выход без каких-либо изменений входящего напряжения. В свою очередь, стабилизатор напряжения

представляет собой устройство, которое подает постоянное напряжение на выход без каких-либо изменений тока нагрузки.

Как выбрать лучший стабилизатор напряжения для дома? Руководство по покупке

При покупке стабилизатора напряжения необходимо учитывать различные факторы.В противном случае вы можете столкнуться со стабилизатором напряжения, который может работать хуже или лучше. Чрезмерное выполнение не повредит, но это будет стоить вам дополнительных долларов. Так почему бы не выбрать такой стабилизатор напряжения, который удовлетворит все ваши требования и сэкономит ваш карман.

Различные факторы, которые играют важную роль при выборе стабилизатора напряжения

Различные факторы, которые играют жизненно важную роль и требуют рассмотрения перед выбором стабилизатора напряжения: —

  • Требования к мощности устройства (или группы устройств)
  • Тип устройства
  • Уровень колебаний напряжения в вашем районе
  • Тип стабилизатора напряжения
  • Рабочий диапазон стабилизатора напряжения, который вам нужен
  • Отсечка повышенного / пониженного напряжения
  • Тип стабилизации / цепи управления
  • Тип крепления для ваш стабилизатор напряжения

Пошаговое руководство по выбору / покупке стабилизатора напряжения для вашего дома

Вот основные шаги, которые вы должны выполнить, чтобы выбрать лучший выпрямитель напряжения для вашего дома: —

  • Проверьте номинальную мощность устройства, для которой вам нужен стабилизатор напряжения.Номинальная мощность указана на задней панели устройства в виде наклейки или паспортной таблички. Это будет в киловаттах (кВт). Обычно номинальная мощность стабилизатора напряжения указывается в кВА. Преобразуйте его в киловатт (кВт).

(кВт = кВА x коэффициент мощности)

  • Рассмотрите возможность сохранения дополнительного запаса в 25–30% от номинальной мощности стабилизатора. Это даст вам дополнительную возможность добавить любое устройство в будущем.
  • Проверьте предел допуска колебания напряжения. Если это соответствует вашим потребностям, вы готовы пойти дальше.
  • Проверьте требования к монтажу и размер, который вам нужен.
  • Вы можете запросить и сравнить дополнительные функции в одном ценовом диапазоне от разных производителей и моделей.

Практический пример для лучшего понимания

Предположим, вам нужен стабилизатор напряжения для вашего телевизора. Предположим, что мощность вашего телевизора составляет 1 кВА. Добавочная наценка 30% на 1 кВА составляет 300 Вт. Добавив и то, и другое, вы можете подумать о покупке стабилизатора напряжения 1,3 кВт (1300 Вт) для вашего телевизора.

Надеюсь, статья получилась информативной.Продолжайте учиться.
Прочтите о том, как выбрать батарею — метод и кратковременные / долгосрочные требования к питанию.

Как стабилизировать ток-напряжение при нестабильном питании?

Приятно ответить на такой простой вопрос! Ну, во-первых, много лет назад мы узнали, как запитать простые устройства с ЖК-индикацией от солнечных батарей, это были настольные калькуляторы. Ионных ячеек тогда не было, они питались напрямую, а чтобы не превышать напряжение, параллельно нагрузке поставили простой диодный ограничитель.

Принцип его работы заключается в том, что на кремниевом диоде в прямом направлении фиксируется напряжение порядка 0,55 … 0,7 вольт. Если мы хотим зафиксировать напряжение в два раза больше (как у вас), вам необходимо подключить два кремниевых диода последовательно — предельное напряжение тогда увеличится до 1,1 … 1,5 вольт. Что касается тока, диод поглощает весь ток, отдаваемый батареей, сверх того, который необходим для цепи с питанием и для зарядки ионистора (кстати, подключение ионистора параллельно диоду ничего не меняет в принцип этой схемы).Поскольку солнечные токи в таких миниатюрных устройствах ничтожны, опасность для этого ограничителя отсутствует.
(Кстати, именно поэтому я думаю, что ваша оценка максимального тока от солнечного элемента в 50 мА сильно завышена — примерно в сто раз. Вы можете получить 50 мА от батареи, а не размером с почтовую накладную. штамп, который обычно ставят в миниатюрные устройства, да ладонь, да и то под прямыми яркими солнечными лучами (тем не менее, микроамперных токов обычно достаточно для питания таких устройств).
Вместо обычных кремниевых диодов в этой схеме можно использовать разные светодиоды. Вот их вольт-амперные характеристики:

Они показывают, что один инфракрасный светодиод ограничивает постоянное напряжение на уровне примерно 1,1 вольта (т.е. может заменить цепочку из двух кремниевых), красный и оранжевый — примерно 1,5 вольта, зеленый — примерно 1,7 вольт. , и синий, УФ (и белый, кстати) — от 2,5 вольт и выше. Последовательное соединение, как и в случае с кремниевыми диодами, увеличивает ограничивающее напряжение пропорционально количеству включенных диодов.
Итак, еще раз: напряжение зависит от вас, но не беспокойтесь о токе, если ваша солнечная панель не больше спичечного коробка.

В наличии разборка БП от компьютера, видеокарта, различные резисторы и светодиоды и пара диодов …

В наличии разборка есть БП от компьютера, видеокарта, разные резисторы и светодиоды и пара диодов …

Активные методы стабилизации электроэнергетических систем с нагрузками постоянной мощности: обзор

В некоторых электрических системах постоянного тока фидером CPL является входной LC-фильтр.Кроме того, в системах питания переменного тока выпрямитель диодного типа эквивалентен LC-фильтру, как показано на рис. 8. На рис. 8 в качестве примера используется нагрузка переменного тока, но она также может быть нагрузкой постоянного тока.

Рис. 8

CPL в системе питания переменного тока и системе питания постоянного тока и их эквивалентная схема

В этих конфигурациях восходящая цепь представляет собой пассивный LC-фильтр. Управление высокой пропускной способностью восходящего канала недоступно. Следовательно, демпфирующее усилие может быть только от самих CPL. Для стабилизации такой каскадной системы были предложены некоторые активные методы демпфирования.Эти методы можно разделить на линейные и нелинейные. В линейных методах компенсирующий ток вводится в CPL для изменения входного импеданса CPL, \ (Z_ {in} (s) \), таким образом, чтобы выполнялся критерий устойчивости Миддлбрука.

Линейные методы

В линейных методах стабилизирующая мощность вводится в CPL для изменения его входного импеданса. Конфигурация линейных методов показана на Рис. 9.

Рис. 9

Конфигурация каскадной системы с линейными методами

Работа каскадной системы с линейными методами может быть описана в (10).

$$ \ left \ {\ begin {align} \ frac {{{\ rm {d}} i}} {{{\ rm {d}} t}} & = — \ frac {{R_ {L} }} {L} i — \ frac {1} {L} u + \ frac {1} {L} V_ {in} \\\ frac {{{\ rm {d}} u}} {{{\ rm {d}} t}} & = \ frac {1} {C} i — \ frac {{P + P_ {stab}}} {Cu} \ end {align} \ right. $

(10)

где, \ (i \) и \ (u \) — ток катушки индуктивности и напряжение конденсатора соответственно. \ (L \) и \ (C \) — индуктор и конденсатор LC-фильтра соответственно. \ (R_ {L} \) — эквивалентный резистор силового кабеля и физического резистора катушки индуктивности.\ (V_ {in} \) — входное напряжение LC-фильтра. \ (P \) — мощность CPL, а \ (P_ {stab} \) — мощность, используемая для стабилизации системы. \ (P_ {stab} \) вводится в CPL для создания виртуального резистора или виртуального конденсатора, параллельно подключенного к конденсатору LC-фильтра, в зависимости от различных линейных методов, как показано на рис. 9.

Есть два требования для \ (P_ {stab } \) [39].

  1. 1)

    С помощью \ (P_ {stab} \) входное сопротивление CPL может быть изменено, чтобы соответствовать критерию стабильности Миддлбрука.

  2. 2)

    В установившемся режиме \ (P_ {stab} = 0 \).

В линейных методах стабилизирующая мощность \ (P_ {stab} \) представлена ​​стабилизирующим током, \ (i_ {stab} \) и

$$ i_ {stab} = \ frac {{P_ {stab} }} {Cu} $$

(11)

После линеаризации вокруг рабочей точки (10) можно переписать как

$$ \ left \ {\ begin {align} \ frac {{{\ rm {d}} i}} {{{\ rm {d }} t}} & = — \ frac {{R_ {L}}} {L} i — \ frac {1} {L} u + \ frac {1} {L} V_ {in} \\\ frac { {{\ rm {d}} u}} {{{\ rm {d}} t}} & = \ frac {1} {C} i + \ frac {u} {CR} + i_ {stab} \ end {выровнено} \ право.$

(12)

, где R — сопротивление CPL.

Чтобы увидеть эффективность методов активной стабилизации, характеристики бесщеточного двигателя постоянного тока без методов демпфирования показаны на рис. 10. Из рис. 10 видно, что во время запуска двигателя, когда скорость вращения \ (\ omega_ {r} \) мала, \ (P \) мала, а R большая и больше, чем \ (\ | {Z_ {o} (s)} \ | \). Следовательно, система устойчива.Однако, когда \ (\ omega_ {r} \) увеличивается больше, тогда R становится маленьким и меньше, чем \ (\ | {Z_ {o} (s)} \ | \), система становится нестабильной.

Рис. 10

Характеристики бесщеточного двигателя постоянного тока без методов демпфирования

Виртуальный резистор \ (R_ {v} \) [2, 23–25]

Изменение (11) так, чтобы

$$ i_ { stab} = \ frac {{C_ {b} (s) u}} {{CR_ {v}}} $$

(13)

где, \ (C_ {b} (s) \) — передаточная функция полосового фильтра с единичным усилением, он представляет виртуальный резистор \ (R_ {v} \), который строится параллельно с LC. конденсатор фильтра.Функция полосового фильтра состоит в том, чтобы выбрать составляющую колебаний, которая находится около резонансной частоты LC-фильтра, и ослабить установившееся значение и шумы переключения. Для стабилизации системы \ (R_ {v} \) необходимо выбрать так, чтобы критерий устойчивости Миддлбрука выполнялся, как показано на рис. 11.

Рис. 11

Диаграмма Боде \ (Z_ {o} (s) \) LC-фильтра и \ (Z_ {in} (s) \) CPL без метода демпфирования и с методом активного демпфирования виртуального резистора

Виртуальный конденсатор \ (C_ {v} \) [22, 23]

Когда (11) изменяется так, что

$$ i_ {stab} = \ frac {{sC_ {v} C_ {l} \ left (s \ right) u}} {C} $$

(14)

где \ (C_ {l} (s) \) — фильтр нижних частот с единичным усилением, виртуальный конденсатор \ (C_ {v} \) построен параллельно с конденсатором LC-фильтра.Таким образом увеличивается общая емкость LC-фильтра. Кроме того, значение \ (C_ {v} \) необходимо выбрать, чтобы выполнить критерий устойчивости Миддлбрука, как показано на рис. 12.

Рис. 12

Диаграмма Боде для \ (Z_ {o} (s ) \) LC-фильтра и \ (Z_ {in} (s) \) CPL без метода демпфирования и с методом активного демпфирования виртуального конденсатора

Сравнение

Из рис. 13 и 14, можно обнаружить, что эффективность метода активного демпфирования путем построения \ (R_ {v} \) лучше, чем у активного метода демпфирования путем построения \ (C_ {v} \), потому что первый метод может достичь почти такой же демпфирующий эффект с относительно меньшими нежелательными колебаниями скорости вращения.

Рис. 13

Характеристики бесщеточного двигателя постоянного тока как CPL с активным методом демпфирования путем создания виртуального резистора \ (R_ {v} = 10 \, \ Upomega \)

Рис. 14

Характеристики двигателя Бесщеточный двигатель постоянного тока в виде CPL с активным методом демпфирования путем создания виртуального конденсатора \ (C_ {v} = 1,200 \, \ upmu {\ rm F} \)

Математически сравнение может быть выполнено на основе метода корневого годографа. Предположим, что эти два метода применяются в нестабильной каскадной системе по отдельности.Из-за того, что оба \ (C_ {b} (s) \) и \ (C_ {l} (s) \) имеют единичное усиление, амплитуда \ (i_ {stab} \) зависит только от \ (1 / R_ {v} \) в (13) или \ (\ omega C_ {v} \) в (14). Мы можем сравнить эти два метода, исследуя демпфирующее усилие с одинаковой амплитудой \ (i_ {stab} \). Таким образом, мы предполагаем, что

$$ \ frac {1} {{R_ {v}}} = \ omega C_ {v} $$

(15)

Следовательно, амплитуда \ (i_ {stab} \) в этих двух методах одинакова. Другими словами, нежелательное влияние на производительность нагрузки такое же.Последовательность \ (R_ {v} \) и \ (C_ {v} \) выбирается, как показано в (16) и (17).

$$ R_ {v} = \ frac {1} {0,5 \ omega Ci} $$

(17)

где \ (i = 1, 2, \ ldots, 8. \) Корневые локусы каскадной системы с двумя активными методами показаны отдельно на рис. 15.

Рис. 15

a Корневые локусы каскадной системы с методом создания виртуального резистора \ (R_ {v} \) (красным) и методом создания виртуального конденсатора \ (C_ {v} \) (синим) и b детали около нуля

На рис.15, можно заметить, что когда \ (i \) увеличивается, полюса системы с методом построения виртуального резистора могут приближаться к отрицательной действительной части намного быстрее по сравнению с методом создания виртуального конденсатора. Следовательно, с той же амплитудой \ (i_ {stab} \), то есть с таким же нежелательным влиянием на характеристики нагрузки, демпфирующее усилие метода создания виртуального резистора лучше, чем метода создания виртуального конденсатора.

Нелинейные методы

Sudhoff S.Д. и др. Предложили нелинейный метод [28]. Однако этот метод имеет ограниченный эффект демпфирования по сравнению с линейным методом. Это было представлено в [39]. В [39] предложен метод управления на основе пассивности. Такое управление на основе пассивности может обеспечить лучший демпфер без больших нежелательных нагрузок. Алгоритм управления на основе пассивности показан в (13) и (14).

$$ \ theta = — R_ {L} \ frac {P} {{V_ {dc}}} + R_ {1} \ left ({i — \ frac {P} {{V_ {dc}}}} \ right) + V_ {in} $$

(18)

$$ P_ {stab} = u \ left ({\ frac {P} {{V_ {dc}}} — C \ frac {{{\ rm {d}} \ theta}} {{{\ rm { d}} t}}} \ right) — P + \ frac {(u — \ theta) u} {{R_ {2}}} $$

(19)

где \ (R_ {1} \) и \ (R_ {2} \) — два коэффициента.\ (\ theta \) и \ (V_ {dc} \) являются эталонными значениями \ (i \) и \ (u \). Однако сложный расчет с измерениями \ (i \), \ (u \) и \ (P \), как показано (18) и (19), может привести к большим ошибкам и шумам. В результате этот метод сложно реализовать.

Чувствительность и доступность

Как показано на рис. 9, стабилизирующая мощность вводится в CPL для стабилизации каскадной системы. Эта стабилизирующая мощность представляет собой переходную колебательную составляющую. Это может привести к нежелательным нагрузочным характеристикам, таким как колебания скорости вращения двигателей.Следовательно, всегда существует компромисс между демпфированием колебаний входного LC-фильтра и характеристиками нагрузки. Следовательно, чувствительность входного напряжения CPL к скорости вращения важна при разработке метода активной стабилизации.

Поскольку вводимая мощность реализуется нижележащими преобразователями, большая стабилизирующая мощность, вводимая в CPL, требуется для достижения большего демпфирующего эффекта. Это подразумевает широкий диапазон значений рабочего цикла в преобразователях, расположенных ниже по потоку.Однако рабочие циклы находятся в диапазоне (0, 1). Следовательно, стабилизирующий эффект ограничен доступным диапазоном рабочего цикла, например повышающие преобразователи с высоким коэффициентом заполнения обычно работают при рабочем цикле от 0,5 до 1. Таким образом, наличие стабилизирующего эффекта активного метода стабилизации является еще одним аспектом, который следует учитывать.

Советы по диагностике и стабилизации нестабильного переключения | Статья

.

СТАТЬЯ

Амир Ранджбар

Получайте ценные ресурсы прямо на ваш почтовый ящик — рассылается раз в месяц

Мы ценим вашу конфиденциальность

Введение

Нестабильный источник питания может вызвать серьезные системные проблемы, такие как слышимый шум от пассивных компонентов, неожиданное дрожание частоты переключения, сильные колебания выходного напряжения во время переходных процессов нагрузки и отказы полупроводниковых переключателей.Хотя существуют различные причины нестабильности, ненастроенная компенсационная сеть является причиной большинства проблем нестабильности в импульсных источниках питания. В этой статье дается руководство о том, как определить, является ли источником нестабильности ненастроенная компенсационная сеть, и предлагаются быстрые советы по повышению стабильности нестабильных источников питания.

Переходная характеристика: мера стабильности источника питания

Переходные характеристики импульсного источника питания характеризуются двумя основными критериями: полосой пропускания (BW) и запасом по фазе (PM).Более высокая полоса пропускания приводит к более быстрому переходному отклику. С другой стороны, более высокое значение PM означает лучшую стабильность. Для получения приемлемых переходных характеристик требуются высокая полоса пропускания и высокая PM. Однако существует компромисс между BW и PM. Методы увеличения BW обычно уменьшают PM, и наоборот.

На рис. 1 показан типичный переходный отклик источника питания с высокой полосой пропускания и низкой PM. Когда происходит переключение нагрузки, выходное напряжение проходит несколько колебаний, прежде чем установится на регулируемом напряжении.Количество колебаний выходного напряжения во время переключения нагрузки является хорошим показателем стабильности источника питания. Количество колебаний напрямую связано с PM и, следовательно, стабильностью источника питания.

Рисунок 1: Типичная переходная характеристика источника питания

Компенсационные сети в регуляторах коммутации

Обычно для импульсных регуляторов широко используются два типа компенсационных сетей: Тип II и Тип III. В компенсационных сетях типа II используется установка нулевого полюса для достижения желаемых BW и PM.Для дальнейшего улучшения переходной характеристики регулятора используется компенсационная сеть типа III. Компенсационные сети типа III добавляют дополнительный набор нулевых полюсов, который помогает достичь более высокой BW и / или более высокой PM. На рисунке 2 показана схема компенсационной сети типа III.

Рисунок 2: Компенсационная сеть типа III

Цель этой статьи — показать, как можно использовать простые методы для стабилизации нестабильного источника питания. Обратите внимание, что предложенные методы будут эффективны только в том случае, если источником нестабильности является ненастроенная компенсационная сеть.

Два типа импульсных регуляторов, описанные ниже, относятся к реализации сети компенсации. Это два типа: импульсные регуляторы с внешней компенсационной сетью и импульсные регуляторы с внутренней компенсационной сетью. На рисунке 3 показаны примеры типичных схем применения для этих двух типов источников питания.

a) Внутренняя компенсационная сеть

б) Внешняя компенсационная сеть

Рисунок 3: Два типа компенсационных сетей в источниках питания

Доступные ручки для стабилизации нестабильного источника питания

Как обсуждалось ранее, нестабильность импульсного регулятора можно проверить, посмотрев на его переходную реакцию на изменение нагрузки.

На рис. 1 показан пример нестабильного источника питания, который демонстрирует несколько колебаний выходного напряжения при переключении нагрузки. Рисунок 4 показывает график Боде для источника питания в Рисунок 1 . В этом примере полоса пропускания составляет 65 кГц, в то время как PM только 16 °. Чтобы получить источник питания с приемлемыми переходными характеристиками, рекомендуется полоса пропускания не более 10% от частоты коммутации и PM> 60 °. Частота переключения источника питания на Рисунке 1 составляла 400 кГц.Это ограничивает допустимую полосу пропускания до

Обратите внимание, что в приложениях, чувствительных к шуму, полоса пропускания должна быть дополнительно ограничена до менее 5% от частоты переключения.

Рисунок 4: График Боде для источника питания на рисунке 1

Рисунок 4 показывает, что кривая амплитуды (синяя) достигает 0 дБ, когда фазовая кривая (красная) уже идет вниз. Для правильной PM и хорошей стабильности точка 0 дБ на кривой амплитуды должна появиться до того, как фазовая кривая начнет снижаться.

Методы, представленные ниже, позволят читателям быстро исправить нестабильные импульсные источники питания, а также предложат методы, позволяющие увидеть, может ли уменьшение полосы пропускания улучшить стабильность. Если стабильность улучшается по мере того, как BW значительно уменьшается, это подтверждение того, что источником нестабильности была ненастроенная компенсационная сеть.

Обратите внимание, что уменьшение BW делает две вещи для улучшения стабильности. Во-первых, это замедляет работу контура управления. Более медленный контур управления предотвращает или ограничивает резкие всплески и / или колебания на выходе.Во-вторых, уменьшение BW может увеличить PM, что, в свою очередь, улучшает стабильность.

Регуляторы с внешними компенсационными сетями

В источниках питания с внешними компенсационными сетями компенсационная цепь размещается на выводе COMP. В этом сценарии быстрый способ увидеть, вызваны ли колебания на выходе ненастроенной компенсационной схемой, — это поместить большой конденсатор на вывод COMP. Большой конденсатор на выводе COMP вводит низкочастотный полюс в контур управления, что значительно ограничивает полосу пропускания.Чем больше этот конденсатор, тем ниже полоса пропускания. На рисунке 5 показан эффект добавления большого конденсатора на вывод COMP. Типичный диапазон для конденсатора на выводе COMP составляет от 100 нФ до 1 мкФ.

Рисунок 5: Эффект от добавления большого конденсатора к выводу COMP

Регуляторы с внутренней компенсационной сетью

Для регуляторов с внутренней компенсационной сетью вывод COMP недоступен. Следовательно, необходимо использовать внешние ручки, чтобы уменьшить полосу пропускания и улучшить стабильность.Наиболее эффективным методом ограничения полосы пропускания импульсного регулятора с внутренней компенсационной схемой является использование резистора, последовательно соединенного с выводом обратной связи (называемого резистором серии FB).

Рисунок 6 показывает влияние добавления резистора серии FB. Этот резистор сдвигает кривую амплитуды вниз с незначительным влиянием на фазовую кривую. Следовательно, он эффективно ограничивает полосу пропускания и увеличивает стабильность источника питания. Чем больше резистор серии FB, тем больше уменьшение полосы пропускания.Типичные резисторы серии FB должны находиться в диапазоне от 5 кОм до 100 кОм.

Проверка предлагаемых методов поиска и устранения нестабильного источника питания

В этом примере в этой статье будут использоваться две части. MPM3530 — это понижающий силовой модуль на 55 В / 3 А с внешней компенсационной сетью от Monolithic Power Systems (MPS). На рис. 8 (а) показана типовая схема применения MPM3530. На рис. 8 (b) показан MPQ4420, синхронный понижающий стабилизатор на 36 В / 2 А от MPS с внутренней компенсационной сетью.

a) Схема типового применения MPM3530

b) Типовая схема применения MPQ4420

Рисунок 8: Пример типовой схемы приложения

Чтобы показать эффективность добавления большого конденсатора на вывод COMP, рассмотрим MPM3530. В этом примере компоненты компенсационной сети выбраны таким образом, что регулятор становится нестабильным. Это достигается увеличением R3 в , рис. 8 (a) с 2,53 кОм до 16 кОм. Рисунок 9 показывает переходную характеристику MPM3530 и ее график Боде.Большое количество колебаний на выходе означает низкую стабильность. Небольшой PM всего 2 ° на графике Боде подтверждает низкую стабильность.

Рисунок 9: Переходная характеристика MPM3530 и график Боде с ненастроенной компенсационной сетью

На рисунке 10 показано, что происходит с переходной характеристикой после добавления конденсатора емкостью 1 мкФ к выводу COMP. Сильные колебания на выходе гаснут, что означает улучшение стабильности. График Боде показывает, что BW, как и ожидалось, значительно снизилась.Уменьшение BW приводит к значительному увеличению PM, что, в свою очередь, улучшает стабильность.

Однако улучшение стабильности достигается за счет более медленного отклика; время установления выходного напряжения значительно увеличилось с 300 мкс до 2 мс. Также обратите внимание, что из-за более медленной реакции на изменение нагрузки максимальное падение напряжения увеличивается до 700 мВ по сравнению с 15 мВ в Рис. 9 .

Рисунок 10: Эффект повышения стабильности большого конденсатора на выводе COMP

MPM3530

Как показано на Рис. 8 (b) , вывод COMP недоступен в регуляторах с внутренними компенсационными сетями, таких как MPQ4420.На рисунке 11 показана переходная характеристика MPQ4420 без резистора серии FB (например, R3 установлен на 0 Ом на рисунке 8 (a)). Сильные колебания выходного напряжения при переходе нагрузки демонстрируют низкую стабильность. Глядя на график Боде, полоса пропускания составляет 72 кГц, в то время как PM только 11 °. Поскольку частота коммутации MPQ4420 по умолчанию составляет 410 кГц, полоса пропускания должна быть ограничена ниже 41 кГц.

Рисунок 11: Переходная характеристика MPQ4420 и график Боде без резистора серии FB

Рисунок 12 показывает, как изменение R3 с 0 Ом на 51 кОм значительно снижает колебания во время переходной характеристики.Как и ожидалось, введение резистора серии FB сместило кривую амплитуды вниз, что означает более низкую полосу пропускания и более высокую PM. В этом сценарии новая полоса пропускания составляет 21 кГц, а PM улучшилась с 11 ° до 43,5 °.

Рисунок 12: Переходная характеристика MPQ4420 и график Боде с резистором серии FB

Дальнейшее улучшение переходной характеристики источника питания

Несмотря на более высокую стабильность и меньшее количество колебаний на выходе, показанном на Рис. 12 , PM все еще ниже целевого значения 60 °.Дальнейшее уменьшение полосы пропускания не приведет к дополнительному увеличению PM и еще больше замедлит время отклика. Как было сказано ранее, более низкая полоса пропускания также увеличивает величину провала напряжения.

Можно использовать дополнительную ручку для улучшения PM без замедления работы регулятора за счет уменьшения полосы пропускания. Это решение представляет собой конденсатор прямой связи (CFF).

Поскольку это внутренняя компенсационная сеть типа II, она не обеспечивает повышения фазы. Если требуется повышение фазы, добавьте CFF в сеть обратной связи (см. Рисунок 13).CFF добавляет еще один ноль к компенсационной сети, что может повысить PM без уменьшения BW. Фактически, если конденсатор выбран правильно, PM может быть улучшена, а BW также может быть увеличена для достижения более быстрой переходной характеристики.

Рисунок 13: Схема MPQ4420 с конденсатором прямой связи

Рисунок 14 показывает переходную характеристику и график Боде для MPQ4420 с резистором серии FB 19 кОм и CFF 220 пФ. Как показано здесь, полоса пропускания увеличилась до 40 кГц, что составляет ровно 10% от частоты переключения, а PM достигла 78 °, что соответствует целевой PM> 60 °.

Рисунок 14: Переходные характеристики MPQ4420 с резистором серии FB и CFF

На рис. 14 показано, что есть только один провал выходного напряжения, что подтверждает хорошую стабильность устройства. Время отклика также было уменьшено примерно до 60 мкс, а пониженное напряжение снижено до 8 мВ.

Заключение

В этой статье было рассмотрено несколько быстрых советов по диагностике и решению проблем нестабильности в импульсных источниках питания. Были предложены отдельные методы стабилизации регуляторов с внешней компенсационной сетью vs.регуляторы с внешней компенсационной сетью. Эффективность предложенных методов была проверена путем их применения к MPM3530 и MPQ4420 от MPS, и в этой статье было продемонстрировано, как конденсатор прямой связи может дополнительно улучшить переходную характеристику импульсного стабилизатора.

_______________________

Вам это показалось интересным? Получайте ценные ресурсы прямо на свой почтовый ящик — рассылайте их раз в месяц!


Получить техническую поддержку

Определение стабилизации Merriam-Webster

sta · bi · lize

| \ Stā-bə-līz

\

переходный глагол

1

: , чтобы сделать стабильным, устойчивым или твердым.

2

: для устойчивой фиксации: например,

б

: для ограничения колебаний

стабилизировать цены

c

: , чтобы установить минимальную цену за

Использование электрического тока для стабилизации грунтов с низкой проницаемостью — ScienceDaily

По данным EU Science Hub, учащение экстремальных погодных явлений будет наносить все более серьезный ущерб инфраструктуре, причем потери, по оценкам, к 2030 году составят 20 миллиардов евро в год.Эти насущные угрозы обостряют потребность в новых ответах на проблему стабилизации грунта.

Ученые Лаборатории механики почвы (LMS) EPFL разработали ряд устойчивых решений, в том числе решение, использующее ферментный метаболизм. Хотя эти методы работают с широким спектром типов почв, они значительно менее эффективны, когда речь идет о глинистых почвах. В статье, опубликованной сегодня в журнале Scientific Reports , команда демонстрирует, как можно улучшить химические реакции, используя систему, подобную батарее, для подачи электрического тока.

Новый тип биоцемента, производимый на месте и при температуре окружающей среды, недавно был предложен как многообещающий метод стабилизации различных типов почв. Этот метод использует метаболизм бактерий для производства кристаллов кальцита, которые прочно связывают частицы почвы вместе. Этот биогеохимический процесс энергоэффективен и рентабелен, и его можно будет быстро развернуть в ближайшие годы. Но поскольку для того, чтобы метод работал, грунт необходимо пропитать, он менее подходит для глинистых грунтов с низкой водопроницаемостью.Теперь команда LMS разработала и успешно протестировала жизнеспособную альтернативу, которая включает применение электрического тока с помощью утопленных электродов.

«Наши результаты показывают, что эта геоэлектрохимическая система действительно влияет на ключевые этапы процесса кальцификации, особенно на образование и рост кристаллов, которые связывают почву вместе и улучшают ее поведение», — говорит Димитриос Терзис, ученый из LMS и один из соавторы статьи.

Биоцемент образуется в результате внесения в почву химических веществ.К ним относятся растворенные ионы карбоната и кальция, которые несут противоположные заряды. Затонувшие аноды и катоды используются для создания электрического поля, почти так же, как гигантская батарея. Ток вынуждает ионы перемещаться через среду с низкой проницаемостью, где они пересекаются, смешиваются вместе и в конечном итоге взаимодействуют с частицами почвы. В результате происходит рост карбонатных минералов, которые действуют как звенья или «мосты», улучшающие механические характеристики и сопротивление почвы.

Документ, в котором излагаются выводы группы по наблюдению и измерению качества этих минеральных перемычек, прокладывает путь для будущих разработок в этой области.Прежде чем технологию можно будет применить в реальном мире, необходимы дальнейшие испытания в различных масштабах. Исследование проводилось в рамках расширенного гранта Европейского исследовательского совета (ERC) на 2018-2023 годы, присужденного профессору Лайссу Лалуи, который возглавляет LMS и является соавтором статьи. У проекта есть три вертикали, нацеленные на понимание фундаментальных механизмов, которые происходят в масштабе почвенных частиц (микромасштаб), на продвинутую характеристику механического поведения в лабораторном масштабе, а также на крупномасштабную разработку и демонстрацию инновационных систем в естественных условиях. среды.В июле 2020 года та же исследовательская группа получила дополнительный грант ERC Proof of Concept для ускорения передачи технологий для промышленных приложений.

В прошлом почвы рассматривались исключительно как смесь твердой земли, воздуха и воды. По словам соавторов, это исследование подчеркивает, как междисциплинарные подходы, т. Е. Использование концепций биологии и электрохимии и включение достижений и механизмов из других научных областей, могут открыть новые захватывающие пути и принести значительные выгоды.

История Источник:

Материалы предоставлены Федеральной политехнической школой Лозанны . Оригинал написан Сесилией Каррон. Примечание. Содержимое можно редактировать по стилю и длине.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *