Авторазбор

Разборка грузовиков Мерседес–Бенц (Mercedes-Benz)

Содержание

Как проверить лямбда зонд? — 2 ответа

Перво-наперво при выходе из строя и неисправности лямбды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

Визуальная проверка лямбда-зонда

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

Исключения:

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.  

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.

Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

И так подведу итог чем можно проверить лямбда зонд: внешним осмотром, мультиметром, прогревом, осциллографом, бортовой системой.

Если отключить лямбда зонд и выполнять проверку без машины, можно измерить только опорное сопротивление. При подключенном элементе, можно измерить сопротивление и напряжение на прогретом двигателе.

Как проверить лямбда зонд мультиметром

Принцип проверки лямбда зонда на всех автомобилях похож. Отличия бывают только в напряжении. Детальнее разобраться поможет проверка на разных машинах.

К примеру, для проверки на Шкоде Октавия, выставляем на мультиметре сопротивление 200 Ом. Когда двигатель холодный оптимальное значение будет равно 9 Ом. Если прогреть двигатель, значение уменьшится за счет токопроводящего напыления.

После этого замеряем чувствительность датчика. Выставляем мультиметр в режим постоянного тока. Подсоединив красный щуп к лямбда зонду а черный к массе, нужно включить зажигание. Показатели будут находиться на уровне 0,45-0,47 V. После прогрева машины показатели будут прыгать от 0,1 до 0,9 V.

Проверка лямбда зонда на Тойоте Камри выполняется также. При включенном зажигании будет показывать до 0,5 V, а при постоянной работе мотора на уровне 2000 оборотов — 0,1 — 0,9 V.

Приблизительно такие же показатели будут на Форд Фокус. Только если нажать педаль газа, а потом ее резко отпустить, мультиметр покажет 1 V. На Камри и Октавии значение может быть чуть ниже — 0,8 V. Это означает, что лямбда зонд работает нормально.

Распиновка широкополосного датчика кислорода

Возможные проблемы с топливом. Часть 5 — DRIVE2

Не спится, вот и решил пописать немного.

Не долго был я безработным. Все творческий отпуск закончен. Новые планы, проекты. Сегодня на совещании нашей команды были определены задачи всем. И у многих запланированы командировки, кто решать сложные вопросы с программистами, ну а мне осталось дождаться получения визы и ждет меня 14 часовой перелет. Еду на ознакомление, изучение и практику новых интересных разработок в области автоспорта и тюнинга двигателей. Необходимо к поездке подготовится, но пару ночей еще у меня есть, что бы закончить серию этих постов.

Я понимаю, становятся они для многих скучными. Но я всячески стараюсь писать, как можно проще и не забывайте, что для меня это очень сложно писать по-русски. Да, я учился в школе, в институте в России, но это было очень давно и все дальнейшее образование в этой области я получил на различных иностранных языках и просто не владею русской терминологией. Буду очень признателен, если кто-то в комментариях будет поправлять мои корявые выражения.

Вот к примеру Drive-by-wire – я знаю как работает, что это, сколько проводов, для чего каждый из них, но как это перевести на русский язык?

Ладно, вернемся к скукоте, к нашим баранам. Не, еще одна мысля пришла. Я вырос в семье физиков брат старший, отец – да Пап поздравляю тебя, у тебя же сегодня день рождения. Так вот они меня научили не запоминать уравнения, законы, теоремы, а главное их прочувствовать. Если достичь такого понимания процессов, то ты всегда будешь в состоянии, потом сам вывести любое уравнение или доказать теорему. Для чего я это, все просто, много комментариев, сообщений получил типа – а какой цвет провода и т.д. Да это не важно, они не постоянны, зависят от изготовителя.

Или многие спрашивают совета как настроить машину, какая смесь и т.д. Не с этого надо начинать. Вы же не можете попросить вас научить, скажем, вырезать аппендицит. Я не думаю, что это как то сложно, если тебе покажут, расскажут и возможно, наверное, даже не быв ДОКТОРОМ произвести эту операцию. Но, что ПРОИЗОЙДЕТ если там будет что то не так? Человек может просто умереть. Вы не можете подходить к изучению вопроса локально, надо комплексно. Наверное, поэтому врачи больше всего и учатся, у них ошибка может стать кому то жизни.

ДАТЧИКИ СОСТАВА ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ

Основные виды:

— Wideband sensors, – широкополосные датчики кислорода,— Air Fuel sensors – датчики составе смеси TOYOTA/SUBARU

— Lean Mixture (датчики обедненной смеси)

Как вы помните, обычный кислородный датчик характеризуется наличием двух устойчивых состояний. При обогащенной смеси он вырабатывает повышенное напряжение, а при избытке кислорода пониженное. Эта ´переключательностьª приводит к тому, что блок управления (БУ) не в состоянии определить точный состав смеси и необходимую в данный момент степень её изменения.

Освежить можете здесь

По мере повышения требований к содержанию вредных веществ в отработавших газах и дальнейшего развития конструкции двигателей внутреннего сгорания такие обычные кислородные датчики перестали удовлетворять требованиям к инжекторным системам, так как не позволяли определять точный состав смеси.

Это потребовало разработки датчиков новой конструкции. Основной параметр (крутизна) выходной характеристики обычного кислородного датчика не позволяет оценивать (определять) состав отработавших газов при работе двигателя. С помощью этих датчиков БУ может определять только приблизительный состав смеси, то есть богатая она или бедная, но не может определить на сколько состав смеси отличается от стехиометрической величины (14.7:1)

ПРИНЦИП ДЕЙСТВИЯ ШИРОКОПОЛОСНОГО КИСЛОРОДНОГО ДАТЧИКА

Широкополосные датчики состоят из двух ячеек: измерительной ячейки и ячейки накачки. С помощью измерительной ячейки содержанию кислорода в выхлопных газах, попадающих в детекторную камеру, сопоставляется напряжение, которое сравнивается с заданной величиной 450 мВ (это значение для стехиометрической смеси).

Любое отличие от 450мВ приводит к тому, что с помощью тока накачки в измерительную камеру подается или отводится столько ионов кислорода, чтобы между электродом на стороне эталонного воздуха и электродом измерительной камеры установилась величина напряжения 450 мВ.

Этот ток накачки является измеряемой величиной, которая почти линейно описывает состояние топливно-воздушной смеси и значение ее лямбда-показателя.

В стехиометрической смеси эта величина равна нулю, поскольку парциальное давление кислорода измерительной камеры соответствует указанной выше заданной величине 450 мВ

Если смесь стехиометрическая (лямбда = 1), то никакой ток через ячейку накачки не идет.

Если смесь богатая, количество остаточного кислорода в выхлопных газах очень незначительно, в ячейке накачивания индуцируется негативный ток и кислород накачивается в детекторную камеру.При обедненной смеси концентрация остаточного кислорода в отработанных газах высокая, в ячейке накачивания индуцируется положительный ток и кислород откачивается из детекторной камеры.

Главное отличие любого датчика состава топливно-воздушной смеси от скачкового датчика кислорода это в том, что выходных значением для измерения состава смеси является значение тока, а не напряжение. Напряжение является управляющими сигналами или выходными из контролера, без которого данный вид сенсоров не способен работать. И конечно он более чувствителен. В чем разница между широкополосным датчиком кислорода wideband и A/F sensor? Wideband О2 сенсор обычно (не без исключения к примеру Хонда) имеет 5 проводов, а A/F сенсор 4 провода.

Рассмотрим сегодня немного 5 проводные датчики

Цвета соответствуют LSU BOSCH

Широкополосные кислородные датчики имеют пять кабельных соединений. Нагревательный элемент снабжается током через серый и белый кабель. Сигнал тока накачки (Ip+) протекает через красный кабель, сигнал измерительной ячейки (Vs+) — через черный кабель. Желтый кабель создаёт измерительное соединение для ячейки накачки и измерительной ячейки (Опорное напряжение IP/ VS)

Для того что бы была одинаковая чувствительность сенсора (одинаковый выходной ток для одной и той же лямбды) устанавливается калибровочное сопротивление Rcal но это кабель идет не от датчика а от ЭБУ или контролера к разъему. Очевидно, что заводские датчики все откалиброваны, и калибровочное сопротивление Rcal обычно установлено в самом разъеме.

Если этой опции нет, как к примеру у контролеров которые используют UEGO (Universal Exhaust Gas Oxygen) датчик (AEM, Innovate …) в таком случае обязательна калибрация на воздухе.

Запомните, что все датчики такого типа имеют как минимум 5 проводов от сенсора к разъему и 6 или 7 от разъема.

Вообще желательно всегда знать, что у Вас за датчик кислорода, для этого есть специальный документ. К примеру, на BOSCH LSU 4.2 www.daytona-sensors.com/download/Bosch_LSU4.pdf

Для сравнения, выходное (измеряемое, определяющее) значения тока для BOSCH LSU 4.2

Для Denso

Очень немало важный фактор. Сила тока на нагревательном элементе намного выше т.к. минимальная рабочая температура датчика состава топливно-воздушной смеси 750 градусов. Подробно об этом контуре поговорим в следующем посте.

Место расположения, установки. Для любителей ставить близко к турбине (или вообще перед ней) рекомендую взглянуть на следующий график

На нем указан % ошибки показаний в зависимости от давления. Учтите 1 бар – это атмосферное давление.

Устал писать

Продолжение следует (датчики тайота/субару)

С уважениемBarik

Page 2

Не спится, вот и решил пописать немного.

Не долго был я безработным. Все творческий отпуск закончен. Новые планы, проекты. Сегодня на совещании нашей команды были определены задачи всем. И у многих запланированы командировки, кто решать сложные вопросы с программистами, ну а мне осталось дождаться получения визы и ждет меня 14 часовой перелет. Еду на ознакомление, изучение и практику новых интересных разработок в области автоспорта и тюнинга двигателей. Необходимо к поездке подготовится, но пару ночей еще у меня есть, что бы закончить серию этих постов.

Я понимаю, становятся они для многих скучными. Но я всячески стараюсь писать, как можно проще и не забывайте, что для меня это очень сложно писать по-русски. Да, я учился в школе, в институте в России, но это было очень давно и все дальнейшее образование в этой области я получил на различных иностранных языках и просто не владею русской терминологией. Буду очень признателен, если кто-то в комментариях будет поправлять мои корявые выражения.

Вот к примеру Drive-by-wire – я знаю как работает, что это, сколько проводов, для чего каждый из них, но как это перевести на русский язык?

Ладно, вернемся к скукоте, к нашим баранам. Не, еще одна мысля пришла. Я вырос в семье физиков брат старший, отец – да Пап поздравляю тебя, у тебя же сегодня день рождения. Так вот они меня научили не запоминать уравнения, законы, теоремы, а главное их прочувствовать. Если достичь такого понимания процессов, то ты всегда будешь в состоянии, потом сам вывести любое уравнение или доказать теорему. Для чего я это, все просто, много комментариев, сообщений получил типа – а какой цвет провода и т.д. Да это не важно, они не постоянны, зависят от изготовителя.

Или многие спрашивают совета как настроить машину, какая смесь и т.д. Не с этого надо начинать. Вы же не можете попросить вас научить, скажем, вырезать аппендицит. Я не думаю, что это как то сложно, если тебе покажут, расскажут и возможно, наверное, даже не быв ДОКТОРОМ произвести эту операцию. Но, что ПРОИЗОЙДЕТ если там будет что то не так? Человек может просто умереть. Вы не можете подходить к изучению вопроса локально, надо комплексно. Наверное, поэтому врачи больше всего и учатся, у них ошибка может стать кому то жизни.

ДАТЧИКИ СОСТАВА ТОПЛИВНО-ВОЗДУШНОЙ СМЕСИ

Основные виды:

— Wideband sensors, – широкополосные датчики кислорода,— Air Fuel sensors – датчики составе смеси TOYOTA/SUBARU

— Lean Mixture (датчики обедненной смеси)

Как вы помните, обычный кислородный датчик характеризуется наличием двух устойчивых состояний. При обогащенной смеси он вырабатывает повышенное напряжение, а при избытке кислорода пониженное. Эта ´переключательностьª приводит к тому, что блок управления (БУ) не в состоянии определить точный состав смеси и необходимую в данный момент степень её изменения.

Освежить можете здесь

По мере повышения требований к содержанию вредных веществ в отработавших газах и дальнейшего развития конструкции двигателей внутреннего сгорания такие обычные кислородные датчики перестали удовлетворять требованиям к инжекторным системам, так как не позволяли определять точный состав смеси.

Это потребовало разработки датчиков новой конструкции. Основной параметр (крутизна) выходной характеристики обычного кислородного датчика не позволяет оценивать (определять) состав отработавших газов при работе двигателя. С помощью этих датчиков БУ может определять только приблизительный состав смеси, то есть богатая она или бедная, но не может определить на сколько состав смеси отличается от стехиометрической величины (14.7:1)

ПРИНЦИП ДЕЙСТВИЯ ШИРОКОПОЛОСНОГО КИСЛОРОДНОГО ДАТЧИКА

Широкополосные датчики состоят из двух ячеек: измерительной ячейки и ячейки накачки. С помощью измерительной ячейки содержанию кислорода в выхлопных газах, попадающих в детекторную камеру, сопоставляется напряжение, которое сравнивается с заданной величиной 450 мВ (это значение для стехиометрической смеси).

Любое отличие от 450мВ приводит к тому, что с помощью тока накачки в измерительную камеру подается или отводится столько ионов кислорода, чтобы между электродом на стороне эталонного воздуха и электродом измерительной камеры установилась величина напряжения 450 мВ.

Этот ток накачки является измеряемой величиной, которая почти линейно описывает состояние топливно-воздушной смеси и значение ее лямбда-показателя.

В стехиометрической смеси эта величина равна нулю, поскольку парциальное давление кислорода измерительной камеры соответствует указанной выше заданной величине 450 мВ

Если смесь стехиометрическая (лямбда = 1), то никакой ток через ячейку накачки не идет.

Если смесь богатая, количество остаточного кислорода в выхлопных газах очень незначительно, в ячейке накачивания индуцируется негативный ток и кислород накачивается в детекторную камеру.При обедненной смеси концентрация остаточного кислорода в отработанных газах высокая, в ячейке накачивания индуцируется положительный ток и кислород откачивается из детекторной камеры.

Главное отличие любого датчика состава топливно-воздушной смеси от скачкового датчика кислорода это в том, что выходных значением для измерения состава смеси является значение тока, а не напряжение. Напряжение является управляющими сигналами или выходными из контролера, без которого данный вид сенсоров не способен работать. И конечно он более чувствителен.В чем разница между широкополосным датчиком кислорода wideband и A/F sensor? Wideband О2 сенсор обычно (не без исключения к примеру Хонда) имеет 5 проводов, а A/F сенсор 4 провода.

Рассмотрим сегодня немного 5 проводные датчики

Цвета соответствуют LSU BOSCH

Широкополосные кислородные датчики имеют пять кабельных соединений. Нагревательный элемент снабжается током через серый и белый кабель. Сигнал тока накачки (Ip+) протекает через красный кабель, сигнал измерительной ячейки (Vs+) — через черный кабель. Желтый кабель создаёт измерительное соединение для ячейки накачки и измерительной ячейки (Опорное напряжение IP/ VS)

Для того что бы была одинаковая чувствительность сенсора (одинаковый выходной ток для одной и той же лямбды) устанавливается калибровочное сопротивление Rcal но это кабель идет не от датчика а от ЭБУ или контролера к разъему. Очевидно, что заводские датчики все откалиброваны, и калибровочное сопротивление Rcal обычно установлено в самом разъеме.

Если этой опции нет, как к примеру у контролеров которые используют UEGO (Universal Exhaust Gas Oxygen) датчик (AEM, Innovate …) в таком случае обязательна калибрация на воздухе.

Запомните, что все датчики такого типа имеют как минимум 5 проводов от сенсора к разъему и 6 или 7 от разъема.

Вообще желательно всегда знать, что у Вас за датчик кислорода, для этого есть специальный документ. К примеру, на BOSCH LSU 4.2 www.daytona-sensors.com/download/Bosch_LSU4.pdf

Для сравнения, выходное (измеряемое, определяющее) значения тока для BOSCH LSU 4.2

Для Denso

Очень немало важный фактор. Сила тока на нагревательном элементе намного выше т.к. минимальная рабочая температура датчика состава топливно-воздушной смеси 750 градусов. Подробно об этом контуре поговорим в следующем посте.

Место расположения, установки. Для любителей ставить близко к турбине (или вообще перед ней) рекомендую взглянуть на следующий график

На нем указан % ошибки показаний в зависимости от давления. Учтите 1 бар – это атмосферное давление.

Устал писать

Продолжение следует (датчики тайота/субару)

С уважениемBarik

Широкополосный датчик кислорода: устройство, принцип работы, неисправности. Широкополосный лямбда-зонд :

Ежегодно в мире ужесточаются экологические нормы. Сейчас каждый автомобиль укомплектован системой фильтрации отработавших газов. И если на дизельных моторах эту функцию выполняет сажевый фильтр и система SCR, то на бензиновых все несколько иначе. Здесь используется каталитический нейтрализатор. Именно он преобразует вредные металлы в экологически чистые оксиды. Однако его работа и эффективность зависима от электроники. Так, в конструкции автомобиля можно встретить широкополосный датчик кислорода. Что это за элемент, как он работает, как устроен и можно ли его проверить своими руками? Ответы на эти вопросы узнаете в нашей сегодняшней статье.

Характеристика

Что это за элемент? Широкополосный лямбда-зонд – это устройство, которое отвечает за измерение количества кислорода в выхлопных газах автомобиля. Благодаря работе данного элемента обеспечивается наиболее правильное смесеобразование и, как следствие, оптимальная и стабильная работа двигателя на всех его режимах. Процесс управления концентрацией кислорода в газах называют лямбда-регулированием.

Сам название «лямбда» происходит от греческого символа λ. В автомобилестроении данным символом обозначается коэффициент остатка воздуха в горючей смеси.

Где находится?

Устанавливается широкополосный лямбда-зонд в выхлопной системе. В зависимости от типа автомобиля, в конструкции может использоваться один или несколько таких датчиков. Так, первый устанавливается до катализатора, второй – после него. Внешне его можно увидеть не всегда. Например, на «Калине» первых поколений данный элемент расположен в районе днища. А начиная со второго поколения кислородный датчик (лямбда-зонд) монтируется прямо в выпускной коллектор, доступ к которому осуществляется из-под капота. Но в любом случае данный элемент будет выглядеть как некая форсунка, что торчит из трубы со жгутом проводов.

Отметим, что на старых автомобилях использовался не широкополосный датчик кислорода, а двухточечный. Он имеет простую конструкцию. Был заменен ввиду необходимости более точных показаний. Ведь чем правильнее смесь, тем более оптимальной будет работа двигателя в разных режимах и нагрузках. Кстати, некоторые устанавливают широкополосный датчик кислорода с показометром. Обычно это цифровой «будильник», который показывает соотношение бензина и воздуха в смеси в режиме реального времени. Зачастую используется для диагностики неисправностей авто. На заводе такой элемент не устанавливается.

Устройство

Конструкция данного механизма предполагает наличие следующих элементов:

  • Металлический корпус с резьбой.
  • Электрический нагреватель.
  • Наконечник.
  • Защитный экран.
  • Токопроводящий контакт.
  • Уплотнительная манжета для провода.
  • Изолятор.

В основе механизма лежат два чувствительных электрода. Внешний имеет платиновое напыление, благодаря которому электрод сильно чувствителен к кислороду. Внутренний же изготовлен из циркония. Устанавливается датчик таким образом, чтобы сквозь него проходили отработанные газы. Внешний электрод улавливает О2, после чего измеряется потенциал между двумя наконечниками. Чем он выше, тем больше кислорода в системе.

Широкополосный датчик кислорода являет собой усовершенствованную конструкцию двухконтактного механизма. Отметим, что потенциал разницы измеряется под воздействием определенной силы тока.

Как это работает?

Алгоритм действия данного элемента основывается на поддержке определенного напряжения. Оно составляет 0,45 В. Это стабильный показатель между двумя электродами датчика.

При снижении концентрации О2, напряжение между керамическим элементом возрастает. это свидетельствует о наличии обогащенной смеси. Данный сигнал моментально поступает в электронный блок управления. Последний на основаниях этих сигналов создает ток определенной силы на исполнительных устройствах (в том числе на форсунке). Та, в свою очередь, впрыскивает больше (или меньше, в зависимости от показаний) бензина в камеру. Если смесь бедная, датчик сигнализирует об этом ЭБУ таким же образом.

Важная особенность

Стоит отметить, что работа чувствительных наконечников возможна только при достижении температуры в триста градусов Цельсия. Рабочий диапазон керамических электродов составляет от трехсот до тысячи градусов. Но как тогда действует элемент «на холодную»? Ранее на двухконтактных устройствах сигнал формировался от иных датчиков (расхода воздуха, положения заслонки и числа оборотов коленвала). Усредненное значение лямбды поступало на блок и тот формировал готовую смесь. Правда, значения эти были не всегда верными. Это не гарантировало оптимальную и стабильную работу двигателя внутреннего сгорания.

Поэтому в новом поколении датчиков (широкополосного типа) используется специальный подогреватель. Его функция – повысить температуру наконечников. Это необходимо, чтобы устройство включилось в работу сразу же после холодного старта двигателя. При достижении температуры в триста градусов, керамический элемент становится твердым электролитом, который пропускает сквозь себя ионы кислорода, скопившиеся на платиновой электродной сетке.

Нагревательный элемент расположен внутри корпуса датчика и питается принудительно от бортовой сети автомобиля.

Значение лямбды и связь с ДВС

Исходя из всего вышесказанного можно сказать, что работа стабильная работа двигателя внутреннего сгорания невозможна без широкополосного датчика. Именно этот элемент формирует сигнальные значения для ЭБУ, который впоследствии корректирует горючую смесь. Электронный блок является связующим звеном, который не только принимает импульсы, но и подает опорное напряжение 0,45 В на датчик. В зависимости от нагрузки двигателя внутреннего сгорания, режима его работы и рабочей температуры электроника подбирает наиболее оптимальное соотношение воздуха и топлива в смеси.

Считается, что идеальное соотношение – это 14,7 частей кислорода на одну часть бензина. При таком условии значение лямбды будет равно единице. Но не стоит забывать о таком значении, как коэффициент избытка воздуха. Если лямбда показывает выше единицы, значит, смесь будет обедненной. В таком случае в цилиндр поступит больше кислорода. Ежели лямбда ниже одного, значит, ЭБУ будет формировать обогащенную смесь. Так, в цилиндры поступит больше топлива, чем обычно.

Ресурс

Это довольно хрупкий элемент в автомобиле. Замена лямбда-зонда может понадобиться уже через 50 тысяч километров. Но как правило, на таком пробеге изнашиваются датчики отечественных авто. Если говорить об иномарках, замена лямбда-зонда может наступить через 100-120 тысяч километров. Точных цифр никто не регламентирует, поскольку ресурс зависит от многих факторов (вплоть до содержания свинца в бензине).

Признаки

Как определить, что кислородный датчик (лямбда-зонд) требует замены? Узнать это очень просто. Поскольку датчик будет неисправен, на электронный блок заведомо поступят ошибочные сигналы и данные. В результате мотор будет работать нестабильно. Причиной тому является неправильно сформированная топливовоздушная смесь. Неисправность кислородного датчика широкополосного типа сопровождается:

  • Увеличением расхода топлива.
  • Нестабильными оборотами на холостом ходу.
  • Неконтролируемым нагреванием катализатора. после остановки мотора, он может потрескивать.
  • Изменением концентрации СО в газах. Выхлоп будет более едким и неприятным на запах.
  • Появлением лампы «Проверьте двигатель» на панели приборов.
  • Снижением разгонной динамики.
  • Провалами (рывками) при попытке набрать скорость.

Если появился хотя бы один из вышеперечисленных симптомов, это повод произвести детальную проверку широкополосного датчика кислорода.

Причины неисправности

Почему данный механизм может выходить из строя? Первая причина – это естественный износ. Если пробег автомобиля составил более 50 тысяч километров, ресурс механизма может подойти к концу. Но также датчик ломается по другим причинам:

  • При обрыве проводов, что идут на датчик. В таком случае сигнал попросту не поступит на ЭБУ.
  • При механическом повреждении. Многие датчики устанавливаются в районе днища. Если автомобиль проехал через глубокое препятствие, возможно повреждение измерительного элемента. При малейшей деформации разрушается гальванический элемент широкополосного датчика кислорода.
  • При перегреве датчика. Это может произойти из-за неполадок в топливной системе автомобиля. Обычно это некорректный угол зажигания либо неправильный тюнинг двигателя (например, не та прошивка ЭБУ при чип-тюнинге).
  • При загрязнении чувствительного элемента. Если закоксовывается верхний слой с платиновым покрытием, ионы не будут улавливаться широкополосным датчиком. Что это может быть? Обычно загрязнения происходят из-за попадания масла в камеру сгорания. данная копоть затем обволакивает стенки выпускного коллектора, а также наконечника датчика. Еще загрязнения могут происходить из-за использования некачественного бензина, который содержит много свинца.
  • При разгерметизации корпуса. Такое бывает редко, но данную неисправность не следует исключать.
  • При попадании антифриза в цилиндры двигателя. это происходит из-за пробоя прокладки головки блока. В результате газы приобретают характерный белый цвет. Помимо этого, меняется и концентрация кислорода в выхлопе. Простыми словами, датчик начинает «сходить с ума». ЭБУ готовит неправильную смесь.

Разбираем контакты

В отличие от двухконтактного датчика, широкополосный имеет несколько иное устройство.

К нему подводится целая колодка с проводами. За что отвечает каждый из них? Ниже мы расскажем о распиновке широкополосного датчика кислорода:

  • Пин-1. Отвечает за ток ионного насоса. Напряжение на этом контакте должно составлять не менее 10 микроампер.
  • Пин-2. Отвечает за массу. Допустимое отклонение – не больше 100 mV.
  • Пин-3. Отвечает за работу гальванического элемента (сигнал Нернста). В отключенном разъеме уровень напряжения должен составлять порядка 0,45 В. При подключенном разъеме данная цифра находится в пределах 1 В.
  • Пин-4 и 5. Эти контакты отвечают за напряжение на подогревателе. Управляется подогреватель широкополосного датчика путем широтно-импульсной модуляции. В случае отказа подогревателя, при компьютерной диагностике будут следующие коды ошибок: РОО36 и РОО64.

Подводим итоги

Итак, мы выяснили, как работает кислородный датчик, как устроен и почему он выходит из строя. Как видите, устроен широкополосный элемент гораздо сложнее, чем двухконтактный. Тем не менее именно такой тип позволяет точно контролировать и правильно готовить топливно-воздушную смесь, не возлагаясь на усредненные параметры. В случае выхода из строя элемент нужно срочно заменить.

Где находится датчик кислорода, мы уже знаем (до и после каталитического нейтрализатора либо в районе выпускного коллектора). При замене могут возникнуть трудности. Резьба часто прикипает, а открутить датчик можно только с использованием универсальных смазок типа ВД-40.

Проверяем лямбда-зонд

©А. Пахомов 2007 (aka IS_18, Ижевск)

На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.

Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:   а) сканером б) мотортестером, подключив щупы и запустив самописец.

Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0.45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8–0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!

Как же нам выяснить, в чем кроется проблема – в датчике или в системе?  Очень просто. Смоделируем ту или иную ситуацию.   1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива. 2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен. 3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0. 45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливо-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом. Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной  смеси. Обратите внимание: эквивалентно! Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае – очень хороший помощник диагноста. Как пользоваться извлекаемой с его помощью информацией, описано в этой статье.

Итак, выводы.

1. Нужно  совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда.  2. Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.

3. Искусственно смоделировав обедненную или, наоборот, обогащенную смесь и отследив реакцию зонда, можно сделать достоверный вывод о его исправности.

4. По крутизне перехода напряжения от состояния «богато» к состоянию «бедно» и наоборот легко сделать вывод о состоянии лямбда-зонда и его остаточном ресурсе.

5. Наличие ошибки, указывающей на дефект лямбда-зонда, отнюдь не является поводом для его замены.

Таблица распиновки датчиков лямбда зонда на 4 провода

Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) — значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

Таблица распиновки датчиков лямбда-зонда

НазначениеЦветовые комбинации для циркониевых датчиков.
12345
Нагреватель +ЧёрныйФиолетовыйБелыйКоричневыйЧёрный
Нагреватель —ЧёрныйБелыйБелыйКоричневыйЧёрный
Сигнал +СинийЧёрныйЧёрныйФиолетовыйЗелёный
Сигнал —БелыйСерыйСерыйБежевыйБелый
НазначениеЦветовые комбинации для титановых датчиков.
12
Нагреватель +ЧёрныйКрасный
Нагреватель —ЧёрныйБелый
Сигнал +СерыйЖёлтый
Сигнал —СерыйЧёрный
Из чего состоит лямбда-зонд

Это интересно  Все, что представила Apple 25 марта 2019

ШЛЗ продолжение. Собираем показометр широкополосного лямбда зонда. — Nissan Laurel, 2.5 л., 1998 года на DRIVE2

Очень неудобно бегать в машину и постоянно менять штатный лямбда зонд на широкополосный для проверки, поэтому все делается очень медленно. Вварить вторую гайку еще не успел.Прибор что-то показывает ))).

Поженил его с Нистюном для наглядности.

Схема довольно сырая и капризная.Очень не хотел писать теорию про работу ШЛЗ, но немного все таки придется.Это устройство не из тех, что просто собрал по примеру и оно работает. Нет, так не получится и в работу датчика придется все таки вникать. Идея в том, что при стехиометрической смеси напряжение на ячейке Нернста = 0.45В. (см рисунок)И мы ШИМ выходом микроконтроллера стараемся создать на молекулярной помпе такое напряжение (а, если быть точным, ток), при котором в измерительной камере как раз будет эта стехиометрическая смесь и на ячейке Нернста будет те самые 0.45В. Для управления ШИМ служит алгоритм ПИД регулятора.Настройка ПИД регулятора, это вообще занятие не для слабонервных.Как его настраивать никто не знает ))). Поэтому мы меняем параметры методом подбора.

В результате, то у нас дикое перерегулирование и показания скачут от мин к макс, то наоборот, система становится такой тормозной, что пока дождешься этих пресловутых 0.45В…

И вот как только поймали, измеряем ток, который проходит через молекулярный насос и по таблице из даташита на Бош ШЛЗ находим конечную величину. Т.е. лямбду…И это только часть задачи… а ведь еще есть подогрев…

В результате нужно строить газовую лабораторию и готовить идеальную смесь )))

Но… Бош, как оказалось позаботился о нас и сделал специальную микросхему — интерфейс для своих же датчиков. Ее, кстати, ставят в ЭБУ автомобилей, что ездят с ЩЛЗ. Говорят, ее тяжело купить. Но в Китае есть все…

Вот примерная схема обвязки.Как видно, без микроконтроллера никак не обойтись, так как микросхема не управляет подогревом. И придется им управлять все таки с микроконтроллера. Микросхема с микроконтроллером общается по SPI (тоже придется разбираться). Но все таки, я думаю, что Бош сделали хорошую микросхему для своих датчиков и все заработает, как надо )))

На десерт заколхозил детонметр — прибор подключается к штатному датчику детонации и измеряет напряжение на нем (с максимальной частотой, как возможно). На фото 2.5В — видимо какое-то опорное напряжение с ЭБУ.Проверить сложно, т.к. очень не хочется принудительно пускать мотор в детонацию…

Широкополосный лямбда-зонд занедорого. Чуда не произошло

В один «прекрасный день» жена сообщила «радостную новость» — в машине загорелся чек. Ремонт своей машины всегда даётся тяжело — за него ж не платят 😉

Диагностика показала неисправность первого лямбда-зонда. А лямбда-зонд тут непростой…


Лог я к сожалению не сохранил, но «сгенерировал» вам вот такую подделку:

Address 01: Engine Labels: 06A-906-033-BGU.lbl

Control Module Part Number: 06A 906 033 CA

Component and/or Version: SIMOS71 1.6l 2VG 5755

Software Coding: 0000071

Work Shop Code: WSC 01279 785 00200

VCID: 60CFC6A5B392304189-8034

3 Faults Found:

17589 — Linear O2 Sensor; Reference Voltage

P1181 — 006 — Open Circuit — MIL ON

Freeze Frame:

RPM: 608 /min

Bin. Bits: 00000100

Voltage: 0.000 V

Voltage: 0.440 V

17511 — Oxygen (Lambda) Sensor Heating; B1 S1

P1103 — 009 — Performance too Low

Freeze Frame:

RPM: 1056 /min

Mass Air / Rev.: 267.1 mg/str

Voltage: 1.940 V

Voltage: 14.28 V

19617 — Linear Oxygen (Lambda) Sensor B1 S1; Pump Current Wire

P3161 — 008 — Open Circuit — MIL ON

Freeze Frame:

RPM: 1216 /min

Bin. Bits: 00100000

Voltage: 5.000 V

Voltage: 0.080 V

Новый оригинальный широкополосник стоит весьма значительных денег, при этом датчик от именитого брэнда NTK только чуть дороже какого-нибудь M&D. Принципы такого ценообразования мне не совсем понятны, а кучу денег вываливать — задушила жаба, плюс — интересно же попробовать чего там китайцы изготовили.

Кратенький «экскурс в теорию», для тех кому это интересно. Лямбда-зонды предназначены для достижения правильной смеси, то есть соотношения воздух-топливо — они выдают блоку управления текущее содержание кислорода в выхлопе, на основании чего ЭБУ понимает текущее соотношение воздух-топливо и корректирует топливоподачу. Изначально они предназначались скорее для поддержания оптимальной смеси для работы катализатора. Первые лямбда-зонды были на основе диоксида циркония — это «керамический электролит». Суть работы лямбда-зонда: это батарейка которая работает на разности содержания кислорода по обе стороны от измерительного элемента. Эти лямбда-зонды достаточно примитивны, они по сути могут говорить только богатая смесь или бедная, соответственно коррекция смеси осуществляется «волнообразно» — богатая? бедним. бедная? обогащаем. и так всё время. Для работы лямбда-зондов требуется определенная температура. Первые шли без подогрева, потом начали делать и датчики с подогревом, что способствует более быстрому выходу на рабочий режим.

Потом появились лямбда-зонды на основе диоксида титана. Эти датчики также «ступенчатого типа», но работают на другом принципе — у них в зависимости от разности содержания кислорода в глушителе и на улице изменяется сопротивление. Баловалась такими датчиками фирма Сименс, применялись они на Опелях, БМВ и некоторых других марках в середине 90х — начале 2000х. Датчики дорогие, потому что редкие. Отличительная особенность — все провода разных цветов, обычно красный-черный-желтый-белый, бывают только 4-проводные. У циркониевых датчиков может быть один, два, три или 4 провода, в последних двух случаях два из них ВСЕГДА одного цвета.

Японцы баловались еще и датчиками обедненной смеси — штука в наших краях крайне редкая и экзотическая. От обычного циркониевого отличается тем, что может работать в том числе и в режимах переобедненной смеси, но на немного другом принципе — ток через датчик в режимах обедненной смеси зависит от концентрации кислорода. Поэтому в режиме нормальной смеси он работает как обычный датчик, а в режиме обедненной смеси на него подается напряжения и контролируется протекающий ток. Если я, конечно, ничего не путаю.

Ну и в итоге производители придумали широкополосные лямбда-зонды. Отличительная внешняя особенность — 5 проводов. Пара картинок: внутреннего устройства и графика зависимости тока от содержания кислорода (ниже опишу что это)

вот что пишет фирма NTK о принципе действия:

Широкополосные датчики имеют две ячейки — измерительную ячейку и ячейку накачки. С помощью измерительной ячейки измеряется содержание кислорода в отработавшем газе, находящемся в камере детекции и затем сравнивается с заданной величиной 450 мВ.

Если эта величина отличается, то ячейка накачки включает ток накачки, при этом в камеру детекции поступают ионы кислорода до тех пор, пока величина напряжения измерительной ячейки не будет снова соответствовать 450 мВ.

Этот ток накачки является измерительной величиной, которая почти линейно описывает точную лябда-величину смеси. При стехиометрической смеси эта величина равна нулю, поскольку частичное давление кислорода в камере детекции соответствует упомянутой заданной величине.


Теперь я поясню грубо и «на пальцах». Датчик отличается от «обычного» наличием ячейки накачки, которая перегоняет кислород извне в измерительную камеру. Вот значение (и направление) этого тока — и есть величина связанная с коэффициентом избытка воздуха λ. Напомню, что λ1 — бедная.

Общая идея работы такова: на проводе Vs поддерживается напряжение 450мВ, путём изменения тока накачки Ip. Величина и направление этого тока показывают состав смеси.

Чуть подробнее о типовой схеме включения: компаратор А сравнивает сигнал кислородной ячейки Vs с эталоном 450мВ и выдает результат на контроллер, который управляет источником тока В для поддержания Vs равного эталонным 450мВ. Этот ток (Ip) измеряется операционным усилителем С по падению напряжения на резисторе 62 Ом и включенном параллельно корректирующем резисторе. Значение этого тока и показывает коэффициент избытка воздуха λ. как они связаны — см график выше.

Широкополосники можно условно разделить на два типа — BOSCH и NTK. У них немного отличается конструкция, в частности, у бошевского датчика присутствует внешний калибровочный резистор, у NTK — нет его. Соответственно, и работа ЭБУ с датчиками тоже немного отличается. Кроме того заметно отличается распиновка датчиков, то есть поставить один вместо другого просто так не получится. Внешне проще всего отличить по цветам проводов: у условного боша будет серый-белый-красный-желтый-черный, у условного нтк — серый-белый-синий-желтый-черный

На этом теоретическую часть я думаю можно закончить и перейти к сути обзора.

Я, как вы знаете, молодец, и конечно же не могу без косяков и приключений. поэтому я при выборе датчика заказал «бош», чему был «страшно рад» (кстати, обзор на аналогичный датчик был). Поэтому был заказан уже правильный датчик, ну и вот он у меня в руках.

Самое сложное — выкрутить старый датчик. стоит он в глушителе и как правило значительно пригорает, что крайне затрудняет его выкручивание. А в данном конкретном автомобиле еще и подлезть к нему — нетривиальная задача. Но мне удалось открутить его прям из моторного отсека, потому что из ямы его и не видно даже толком…

Старый датчик:

Вместе с новым:

Ну и группенфото старого датчика с двумя новыми:

Внешний вид датчиков порадовал. Если бы на них написали бош и нтк — я б пожалуй поверил. Сложилось впечатление, что они, в отличие от оригинала, полностью из нержавейки. На разъеме правильного датчика даже «314» написали, как на оригинале. 😉 Единственное отличие — на оригинальном датчике на выходе есть гофра (на фото не видно, спряталась под кембрик), на китайском — провода выходят из датчика без неё. Длина провода как у оригинала.

Вкручиваем датчик, и идём подключать ноутбук и проверять работу.

Коррекции меняются, воздух-топливо меняется, лямбда работает, ошибки не появились.

Счастье однако длилось не долго. Через пару дней начали появляться ошибки по лямбда-зонду:

19058 — Linear Oxygen (Lambda) Sensor B1 S1 Pump Current Trim Circuit

P2626 — 000 — Open

Freeze Frame:

RPM: 1376 /min

Mass Air / Rev.: 87.2 mg/str

Voltage: 5.100 V

Bin. Bits: 00000100

(no units): 0.99

Voltage: 0.000 V

16514 — Oxygen (Lambda) Sensor B1 S1

P0130 — 000 — Malfunction in Circuit

Freeze Frame:

При этом на холостых всё работает отлично, и тесты датчик проходит, но в движении при сбросе газа — увы имеем вот такую картину с большим значением параметра A/F что вроде бы и правильно по логике, но неправильно с точки зрения ЭБУ, и как следствие — вышеприведенные ошибки

Таким образом можно констатировать, что широкополосные датчики — датчики непростые, и могут не работать нормально с некоторыми системами. При этом в данном конкретном случае датчик нормально работает на всех режимах кроме режима принудительного холостого хода (отсечки топлива при сбросе газа). При этом нельзя сказать что датчик работает совсем уж неправильно, но тем не менее такое его поведение не нравится блоку управления и он зажигает лампочку.

На другом блоке управления, другом двигателе, другой машине — «китаец» может и прокатить. Но на двигателе BSE данный датчик работать не захотел. Точнее, с ним не захотел работать блок управления двигателем. Кстати, не исключено что с другой прошивкой — будет работать нормально. Мне же придётся таки купить оригинал (ну, точнее, как «придётся купить оригинал» — собственно, оригинал куплен и установлен, и с ним всё

ок уже пару месяцев)… А эти датчики — я при случае опробую на других машинах, но уже с большой осторожностью, благо знаю что возможны «подводные камни».

Как проверить лямбда зонд: мультиметром, тестером

Лямбда-зонд– это кислородный датчик, интегрированный в автомобиль для проверки объема несгоревшего воздуха в структуре отработанных газов. Информация, считанная устройством, передается в бортовой компьютер. Он, опираясь на имеющиеся показатели, автоматически настраивает пропорции воздуха и топлива, заставляя смесь интенсивнее сгорать. Визуально деталь не кажется важной, но это не так. Если работоспособность устройства нарушена– расход топлива начнет увеличиваться.

Что такое лямбда-зонд

Лямбда-зонд– это кислородный датчик, прикрученный к выпускному коллектору, реже– к корпусу двигателя. Путем проверки объема неотработанного кислорода он посылает сигнал ЭБУ автомобиля. Датчик остаточного кислорода заставляет блок управления изменить параметры смешивания кислорода с топливом.

В конструкции предусмотрено определенное число проводов. По этому фактору изделия бывают:

  • однопроводными;
  • двухпроводными;
  • трехпроводными;
  • четырехпроводными.

Как своими руками проверить лямбда-зонд на работоспособность

Чтобы проверить датчик своими руками подойдут такие способы:

  • внешний осмотр;
  • с применением мультиметра;
  • с помощью осциллографа;
  • метод прогрева зонда;
  • через бортовую систему.

Рассмотрим варианты поподробнее.

Внешний осмотр

Сначала надо проверить исправность каждого провода, ведущего к устройству. Проверка выполняется путем легкого расшатывания проводников в разные стороны. При повреждении слоя защитной изоляции выходной сигнал исказится, поступит с перебоями.

Далее обратите внимание на корпус. Оцените состояние контактов. Датчик ничем не прикрыт, поэтому на него постоянно попадает вода, окисляющая контакты. Для получения достоверных результатов рекомендуем открутить изделие и посмотреть на внешний вид защитной трубки.

Мультиметр

Чтобы проверить сигнал, который передает лямбда-зонд автомобиля, мастера обычно пользуются омметром и вольтметром. Но есть универсальный тестер, не требующий использования двух устройств одновременно– мультиметр. Для диагностики состояния накальной спирали нужно отключить разъемы 3 и 4 (обычно это белый и коричневый провода), а затем подсоединить их концы к зажимам. Деталь считается исправной, если спираль выдает сопротивление минимум 5 Ом.

Подклчение мультиметра к датчику кислородаю.
1. Сигнальный провод.
2. Провода нагревателя.
3. Датчик.Подклчение мультиметра к датчику кислородаю.
1. Сигнальный провод.
2. Провода нагревателя.
3. Датчик.

Подключение мультиметра к датчику кислорода.
1. Сигнальный провод.
2. Провода нагревателя.
3. Датчик.

При полном отсутствии напряжения выполните прозвон всех проводов, идущих к реле от выключателя системы зажигания.

Осциллограф

Осциллограф позволяет определить параметры чувствительности датчика путем демонстрации графика изменений. Для проверки работы нужно прогреть двигатель, а затем посмотреть на вольтаж сигналов. Нормальный диапазон– от 0.1 до 0.9 В. Количество изменений, зарегистрированных осциллографом, не должно превышать 8-9. Меньшее количество свидетельствует о медленном отклике датчика, из-за чего его надо заменить.

Прогрев зонда

Еще один интересный способ– запускаем двигатель, делаем ему подогрев 5-10 минут, а затем жмем педаль газа и удерживаем обороты на уровне трех тысяч в минуту. Удерживать газ в таком положении надо три минуты. За это время он нагреется. Проверяем напряжение. Допуск– 0.2-1 В. Интенсивность включения датчика– 1 раз в секунду. Если включение отсутствует, а на тестере показано напряжение 0.4-0.5 В, зонд подлежит замене.

Бортовая система

К сервисному порту автомобиля подключаем диагностический сканер. Проверяем количество ошибок, сохраненных в интегрированной памяти. У каждого производителя есть свой список обозначений кодов ошибок, поэтому выведенный список неисправностей сверяем с сервисной таблицей вашей марки. Простой и быстрый способ оценки состояния датчика кислорода.

Как проверить широкополосный лямбда зонд

В широкополосном датчике предусмотрена другая распиновка, а диапазон измерений выходит за штатные значения. В широкополосных устройствах обязательной проверке подлежит как датчик, так и проводка, ведущая к нему. Для диагностики используем тестер либо считываем коды ошибок с электронного блока управления. Сигнал элемента Нернста должен выдавать от 0 до 1 В. Исправность цепи проверяется по работе принудительного обогащения.

Видеообзор

Рекомендуем ознакомиться с полезным видео по диагностике лямбда-зондов.

Распиновка датчик кислорода


Таблица распиновки датчиков лямбда зонда на 4 провода

Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) — значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

 

Таблица распиновки датчиков лямбда-зонда

НазначениеЦветовые комбинации для циркониевых датчиков.
12345
Нагреватель +ЧёрныйФиолетовыйБелыйКоричневыйЧёрный
Нагреватель —ЧёрныйБелыйБелыйКоричневыйЧёрный
Сигнал +СинийЧёрныйЧёрныйФиолетовыйЗелёный
Сигнал —БелыйСерыйСерыйБежевыйБелый
НазначениеЦветовые комбинации для титановых датчиков.
12
Нагреватель +ЧёрныйКрасный
Нагреватель —ЧёрныйБелый
Сигнал +СерыйЖёлтый
Сигнал —СерыйЧёрный
Из чего состоит лямбда-зонд

 

gradientr.com

Распиновка лямбда зонда 4 провода

Вариант 2:
— Чёрный провод на ЭБУ
— Серый провод — масса
— Белые провода — «-» и «+ «подогрева зонда — полярность не имеет значения.
В данном случае белый «-» кидают на массу, а белый «+» на замок зажигания, или на акб через реле или что нибудь в этом роде. Тогда получается что 2 родных контакта остаются пустыми.

Распиновка лямбда зонда на 4 провода. Схема

Большинство циркониевых лямбда-зондов, которые ставятся на автомобили начиная 1999 года, имеют одинаковые цветовые дифференциации циркониевых датчиков. То же и с лямбда-зондами, выпускаемыми с применением титановых сплавов — распиновка у них соответствует одинаковым значениям, выведенным в таблице. Одна лишь разница — машин с лямбда-зондами на циркониевой основе очень много, титановые — редкость, но все же встречаются. Определение назначения каждого контакта лямбда-зонда можно определить, воспользовавшись специальными таблицами, которые будут представлены ниже.

Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) — значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

Таблица распиновки датчиков лямбда-зонда

Назначение

Цветовые комбинации для циркониевых датчиков.

Заметки malykh.com

2014-11-12

Датчик кислорода: цвета четырех проводов

У массовых (узкополосных) четырехпроводных датчиков кислорода два провода используются для сигнала, а оставшиеся два — для цепи подогрева. Цепь подогрева найти легко — это два провода одного цвета. Т.е. сперва находим одинаковые цвета, а назначение (расшифровку) оставшихся двух определяем по типовым для японских машин вариантам:

Черные провода цепи подогрева

1. Синий — сигнал, белый — масса (очень частый вариант для японских автомобилей, датчики Denso).
2. Белый — сигнал, зеленый — масса (Honda).

Белые провода цепи подогрева

1. Черный — сигнал, серый — масса (типовой вариант для заменителей, используется датчиками Bosch и другими).
2. Черный — сигнал, красный — масса (изредка бывает).

Речь, конечно, о проводах от самого датчика до разъема. Дальше цвета могут быть самые разные.

На Jimny используется Denso’вская схема: два черных, синий и белый.

Схема эмулятора лямбда зонда своими руками

Дата публикации: 16 января 2017 .
Категория: Автотехника.

Лямбда зонд (также называется кислородным контроллером, датчиком O2, ДК) является неотъемлемой частью выхлопной системы автотранспортных средств, отвечающих экологическим стандартам EURO-4 и выше. Это миниатюрное устройство (обычно устанавливается 2 лямбда зонда и более) контролирует содержание O2 в выхлопных смесях автотранспортного средства, благодаря чему значительно снижается выброс ядовитых отходов в атмосферу.

В случае некорректной работы ДК или если произошло отключение лямбда зонда, функционирование силового агрегата может быть нарушено, из-за чего мотор перейдет в аварийный режим (на панели загорится Check Engine). Чтобы такого не случилось, систему автомобиля можно перехитрить, установив обманку.

Механическая обманка лямбда зонда («ввертыш»)

«Ввертыш» – это втулка, изготовленная из бронзы или теплоустойчивой стали. Внутренняя часть такой «проставки» и ее полости заполняются керамической крошкой со специальным каталитическим покрытием. Благодаря этому отработанные газы дожигаются быстрее, что, в свою очередь, приводит к разным показателям импульсов 1 и 2 ДК.

Важно! Любая обманка устанавливается только на исправный лямбда зонд.

Самодельная обманка лямбда зонда, схема которой представлена ниже, проста в изготовлении. Для этого вам потребуется подготовить:

Делается обманка на обрабатывающем токарном станке. Если такового нет, то можно обратиться к специалисту, предоставив ему чертеж.

Полученная деталь совместима с большинством выхлопных систем как отечественных, так и зарубежных автомобилей.

Установка обманки лямбда зонда производится следующим образом:

  • Поднимите авто на эстакаду.
  • Отключите минусовую клемму на АКБ.
  • Выкрутите первый (верхний) зонд (если их два, то снимите тот, который расположен между катализатором и выпускным коллектором).
  • Вкрутите лямбда зонд в «проставку».
  • Установите «усовершенствованный» датчик на место.
  • Подключите клемму к аккумулятору.

Полезно! Обычно механическая обманка второго лямбда зонда не выполняется, так как этот ДК защищен катализатором и контролирует только его состояние. Самым чутким является именно первый датчик, который установлен ближе всего к коллектору.

После этого системная ошибка «Check Engine» должна исчезнуть. Если этот способ не сработал, можно воспользоваться более дорогостоящей обманкой.

Электронная обманка

Еще один способ устранения проблем с ДК – это электронная обманка лямбда зонда, схема которой представлена чуть ниже. Так как датчик кислорода передает сигнал контроллеру, то схема-обманка, подключенная к проводке от датчика к разъему, позволит «загрубить» систему. Благодаря этому, в ситуации, если лямбда зонд будет неисправен, силовой агрегат будет продолжать работать корректно.

Полезно! Места установки такой обманки могут отличаться в зависимости от модели АТС. Например, она может быть монтирована в центральный тоннель между сиденьями, в торпеде или моторном отсеке.

Схема-обманка – это однокристальный микропроцессор, который анализирует процессы в катализаторе, получает данные от первого ДК, обрабатывает их, преобразует до показателей второго датчика и выдает на процессор автомобиля соответствующий сигнал.

Чтобы установить обманку этого типа, вам потребуется схема подключения лямбда зонда, которая выглядит следующим образом.

Как видите, бывает разная распиновка лямбда зонда (4 провода, три и два). Цвета проводов могут также отличаться, чаще всего встречаются изделия с 4 пинами (2 черных, белый и синий).

Для изготовления обманного устройства, вам потребуется:

  • паяльник с мелким жалом и припой;
  • канифоль;
  • неполярный конденсатор емкостью 1 мкФ Y5V, +/- 20%;
  • резистор (сопротивление) на 1 мОм, С1-4 имп, 0,25 Вт;
  • нож и изоляционная лента.

Полезно! Перед установкой, схему лучше всего поместить в пластиковый корпус и залить ее «эпоксидкой».

Дальше электронная обманка на лямбда зонд своими руками монтируется следующим образом:

  • Отключите минусовую клемму АКБ.
  • «Препарируйте» провод, который идет от самого ДК к разъему.
  • Разрежьте синий провод и подсоедините его обратно через резистор.
  • Впаяйте неполярный конденсатор меду белым и синим проводами.
  • Заизолируйте соединения.

Ниже представлена схема обманки лямбда зонда своими руками для распиновки на 4 провода.

На заключительном этапе, должно получиться следующее.

Такие манипуляции не стоит выполнять, если у вас нет должного опыта. Сегодня в магазинах представлены готовые схемы-обманки, которые без труда сможет установить даже начинающий водитель.

Перепрошивка контроллера

Некоторые особо искушенные автовладельцы решаются на перепрошивку блока управления, благодаря чему блокируется обработка сигналов второго кислородного датчика. Однако необходимо учитывать, что любые изменения алгоритма работы системы могут привести к необратимым последствиям, так как вернуть заводские настройки будет практически невозможно и затратно. Поэтому выполнять такие манипуляции самостоятельно не рекомендуется. То же самое касается и готовых прошивок, которые продаются в интернете.

Полезно! При перепрошивке лямбда зонды удаляются.

Если вы все-таки хотите произвести перепрошивку системы, то обратитесь к грамотному специалисту, который сможет отключить получение данных ДК с помощью специализированного оборудования.

Также стоит учитывать, что практически любое вмешательство в работу систем, может привести к не самым приятным последствиям.

Какие последствия бывают после установки обманок

Нужно понимать, что любая обманка устанавливается на страх и риск автовладельца. Если монтаж был произведен неправильно, то вы можете столкнуться со следующими проблемами:

  • Из-за того, что бортовой компьютер не может регулировать впрыск жидкости, может произойти нарушение работы мотора.
  • Если схема неправильно спаяна, это может привести к повреждению электропроводки.
  • В процессе установки обманки вы можете повредить датчики кислорода, после чего даже не узнаете об их неисправности (так как у вас уже будет установлена обманка).
  • После таких вмешательств (не только при перепрошивке) может произойти сбой в бортовом компьютере.

Любая неточность приведет к плачевным последствиям, поэтому лучше установить более безопасный готовый эмулятор. В отличие от обманки, он не «обманывает» блок управления, а лишь обеспечивает его корректную работу, преобразуя сигнал ДК. Внутри эмулятора также установлен микропроцессор (как и в самодельной электронной обманке), который способен оценивать выхлопные газы и анализировать ситуацию.

В заключении

Многие автовладельцы устанавливают на свои машины самодельные обманки, чтобы сэкономить на покупке новых кислородных датчиков. Однако в такой погоне за выгодой, вы вполне можете столкнуться с большими денежными затратами, если кустарное устройство повлияет на работу «жизненно-важных» систем. Поэтому устанавливать обманки рекомендуется, только если вы смыслите в работах такого плана.

Статья написана по материалам сайтов: cashbuzz.ru, malykh.blogspot.com, avto-moto-shtuchki.ru.

«

Отличная статья 0

the-avto.ru

Mitsubishi Pajero Sport «PATTAYA» › Бортжурнал › Самостоятельная проверка кислородного датчика

Многие сталкиваются с ошибками, которые связаны с кислородными датчиками, но ошибка конкретно на кислородный датчик не указывает. Но все же может быть проблема в первом/верхнем кислородном датчике. Как же проверить работоспособность датчика?

Чтобы проверить работоспособность первого/верхнего кислородного датчика, нужны: трезвый взгляд и тестер с вольтметром и омметром.

Внешняя проверка трезвым взглядом кислородного датчика
Вначале осматриваем внешне проводку на выявление оплавления, обрыва или замыкания контактов.

Если при осмотре все нормально, продолжаем. Выкручиваем датчик (за левым или правим колесом) и осматриваем его на наличие отложений.

Наличие сажи может быть вызвано богатой смесью, износом двигателя и клапанов или утечки в выхлопной системе, и из-за копоти, закрывающей отверстия защитной трубки датчика, датчик работает не верно, и посылает некорректные сигналы на БУ.

Сильные белые или серые отложения говорят о применении в топливе присадок или содержание в топливе высокого процента свинца, что выводит датчик из строя.

Если внешний осмотр не выявил никаких негативных признаков, продолжаем проверку.

Проверка сигнального напряжения кислородного датчика
Устанавливаем на место датчик. Находим место соединения колодки разъема датчика и разъема общего жгута (сзади двигателя по середине возле салонной перегородки) На колодке разъема кислородного датчика есть 4 контакта:
клемма 1 – сигнал +;
клемма 2 – масса;
клемма 3 – подогрев;
клемма 4 – подогрев.

С обратной стороны колодки разъема (где входят провода в разъем) кислородного датчика вставляем разогнутую скрепку в гнездо с клеммой №1 (сигнал +) и еще одну скрепку вставляем в гнездо с клеммой №2 (масса). Берем вольтметр. Положительный щуп вольтметра подсоединяем к скрепке с клеммой №1 (сигнал +), а отрицательный щуп вольтметра подсоединяем к скрепке с клеммой №2 (масса).

Проверку проводим на авто с АКПП в положении «Р», на авто с МКПП в нейтральном положении. Заводим авто и отслеживаем изменение сигнального напряжения датчика.
В начале датчик выдает сигнал с постоянной амплитудой 0,1 – 0,2 В, так называемый режим разомкнутого контура. Когда двигатель достигает нормальной рабочей температуры показания датчика на вольтметре должны колебаться в пределах 0,1 – 0,9 В, режим замкнутого контура. Если показания не переходят в режим замкнутого контура или же переходят но с большой задержкой, то есть двигатель нагрелся, а показания все равно 0,1 — 0,2 В, то датчик неисправен.

Проверка нагревателя кислородного датчика
Рассоединяем разъем колодки датчика от разъема общего жгута. Подключаем омметр на клеммы нагревателя №3 и №4. Номинальное сопротивление должно быть в диапазоне 10 — 40 Ом.

Проверка питания на нагреватель датчика
Включаем зажигание, не запускаем двигатель. Рассоединяем разъем колодки датчика от разъема общего жгута. Измеряем напряжение со стороны жгута. Положительный щуп вольтметра на клемму №4, а отрицательный щуп на клемму №2 (масса), на приборе должно показывать напряжение АКБ, в случае отсутствия питания проверяем состояние электропроводки.

При отрицательном результате в вышеперечисленных проверках, за исключением последнего пункта, кислородный датчик требует замены. Замену можно делать как на оригинальный так и сэкономив средства на более дешевый заменитель ничем не хуже в работоспособности оригинала что уже было описано тут.

www.drive2.ru

Проверяем лямбда-зонд ⋆ CHIPTUNER.RU

Проверяем лямбда-зонд

©А. Пахомов 2007 (aka IS_18, Ижевск)

На написание этого материала натолкнуло обилие вопросов на нашем форуме, связанных с непониманием (или недопониманием) принципа работы датчика кислорода, или лямбда-зонда.

Прежде всего, нужно идти от общего к частному и понимать работу системы в целом. Только тогда сложится правильное понимание работы этого весьма важного элемента ЭСУД и станут понятны методы диагностики.

Чтоб не углубляться в дебри и не перегружать читателя информацией, я поведу речь о циркониевом лямбда-зонде, используемом на автомобилях ВАЗ. Желающие разобраться более глубоко могут самостоятельно найти и прочитать материалы про титановые датчики, про широкополосные датчики кислорода (ШДК) и придумать методы их проверки. Мы же поговорим о самом распространенном датчике, знакомом большинству диагностов.

Итак, датчик кислорода. Когда-то очень давно он представлял собой только лишь чувствительный элемент, без какого-либо подогревателя. Нагрев датчика осуществлялся выхлопными газами и занимал весьма продолжительное время. Жесткие нормы токсичности требовали быстрого вступления датчика в полноценную работу, вследствие чего лямбда-зонд обзавелся встроенным подогревателем. Поэтому датчик кислорода ВАЗ имеет 4 вывода: два из них – подогреватель, один – масса, еще один – сигнал.

Из всех этих выводов нас интересует только сигнальный. Форму напряжения на нем можно увидеть двумя способами:
 
а) сканером
б) мотортестером, подключив щупы и запустив самописец.

Второй вариант, вообще говоря, предпочтительнее. Почему? Потому, что мотортестер дает возможность оценить не только текущие и пиковые значения, но и форму сигнала, и скорость его изменения. Скорость изменения – это как раз характеристика исправности датчика.

Итак, главное: датчик кислорода реагирует на кислород. Не на состав смеси. Не на угол опережения зажигания. Не на что-либо еще. Только на кислород. Это нужно осознать обязательно. Как именно это происходит, в подробностях описано здесь.

На сигнальный вывод датчика с ЭБУ подается опорное напряжение 0.45 В. Чтоб быть полностью уверенным, можно отключить разъем датчика и проверить это напряжение мультиметром или сканером. Все в порядке? Тогда подключаем датчик обратно.

К слову, на старых иномарках опорное напряжение «уплывает», и в итоге нормальная работа зонда и всей системы нарушается. Чаще всего опорное напряжение при отключенном датчике бывает выше необходимых 0.45 В. Проблема решается путем подбора и установки резистора, подтягивающего напряжение к «массе», тем самым возвращая опорное напряжение на необходимый уровень.

Дальше схема работы датчика проста. Если кислорода в газах, омывающих датчик, много, то напряжение на нем упадет ниже опорного 0. 45 В, примерно до 0.1В. Если кислорода мало, напряжение станет выше, около 0.8–0.9 В. Прелесть циркониевого датчика в том, что он «перепрыгивает» с низкого на высокое напряжение при таком содержании кислорода в отработанных газах, которое соответствует стехиометрической смеси. Это замечательное его свойство используется для поддержания состава смеси на стехиометрическом уровне.

Поняв, как работает датчик, легко осознать методику его проверки. Предположим, ЭБУ выдает ошибку, связанную с этим датчиком. Например, Р0131 «Низкий уровень сигнала датчика кислорода 1». Нужно понимать, что датчик отображает состояние системы, и если смесь действительно бедная, то он это отразит. И замена его абсолютно бессмысленна!

Как же нам выяснить, в чем кроется проблема – в датчике или в системе?  Очень просто. Смоделируем ту или иную ситуацию.
 
1. Например, при жалобе на бедную смесь и низком напряжении на сигнально выводе датчика увеличим подачу топлива, пережав шланг обратного слива. Или, при его отсутствии, брызнув во впускной коллектор бензина из шприца. Как отреагировал датчик? Показал ли обогащенную смесь? Если да – то нет никакого смысла его менять, нужно искать причину, почему система подает недостаточное количество топлива.

2. Если же смесь богатая, и зонд это отображает, попробуйте создать искусственный подсос, сняв какой-нибудь вакуумный шланг. Напряжение на датчике упало? Значит, он абсолютно исправен.

3. Третий вариант (достаточно редкий, но имеющий место). Создаем подсос, пережимаем «обратку» – а сигнал на датчике не меняется, так и висит на уровне 0.45 В, либо меняется, но очень медленно и в небольших пределах. Все, датчик умер. Ибо он должен чутко реагировать на изменения состава смеси, быстро меняя напряжение на сигнальном выводе.

Для более глубокого понимания добавлю, что при наличии небольшого опыта легко установить степень изношенности датчика. Это делается по крутизне фронтов перехода с богатой смеси на бедную и обратно. Хороший, исправный датчик реагирует быстро, переход почти что вертикальный (смотреть, само собой, мотортестером). Отравленный либо просто изношенный датчик реагирует медленно, фронты переходов пологие. Такой датчик требует замены.

Понимая, что датчик реагирует на кислород, можно легко уяснить еще один распространенный момент. При пропусках воспламенения, когда из цилиндра в выпускной тракт выбрасывается смесь атмосферного воздуха и бензина, лямбда-зонд отреагирует на большое количество кислорода, содержащееся в этой смеси. Поэтому при пропусках воспламенения очень возможно возникновение ошибки, указывающей на бедную топливо-воздушную смесь.

Хочется обратить внимание еще на один важный момент: возможный подсос атмосферного воздуха в выпускной тракт перед лямбда-зондом. Мы упоминали, что датчик реагирует на кислород. Что же будет, если в выпуске будет свищ до него? Датчик отреагирует на большое содержание кислорода, что эквивалентно бедной  смеси. Обратите внимание: эквивалентно! Смесь при этом может быть (и будет) богатой, а сигнал зонда ошибочно воспринимается системой как наличие бедной смеси. И ЭБУ ее обогатит! В итоге имеем парадоксальную ситуацию: ошибка «бедная смесь», а газоанализатор показывает, что она богатая. Кстати сказать, газоанализатор в данном случае – очень хороший помощник диагноста. Как пользоваться извлекаемой с его помощью информацией, описано в этой статье.

Итак, выводы.

1. Нужно  совершенно четко отличать неисправность ЭСУД от неисправности лямбда-зонда. 

2. Проверить зонд можно, контролируя напряжение на его сигнальном выводе сканером или подключив к сигнальному выводу мотортестер.

chiptuner.ru

Датчик лямбда зонда: распиновка, напряжение, устройство, сопротивление

В современном технократическом мире существует потребность применения специальных устройств, называемых датчиками лямбда зондов, контролирующих концентрацию кислорода в отработанных газах двигателей внутреннего сгорания и котельных агрегатов. Тенденции к ужесточению экологических норм автомобильных выхлопов заставляют производителей автомобилей применять дублирующие датчики для более эффективной работы системы впрыскивания топлива и катализатора уходящих газов.

Описание и назначение устройств

Кислородные датчики, чаще всего, представляют собой гальваническую систему с твердотельным электролитом, который входит в рабочий режим при нагревании свыше 300˚C. Они изготавливаются с применением различных материалов в роли электролита, имеют конструкции в зависимости от назначения.

Название λ-зонды получили из-за обозначения данной греческой буквой коэффициента, отвечающего за избыток воздуха в двигателе внутреннего сгорания. При наилучшей пропорции топлива и воздуха в цилиндре двигателя (достигается максимальный КПД при минимальном расходе топлива), отношение расхода используемой воздушной смеси к стехиометрическому (оптимальному): λ = 1. При данном показателе двигатель автомобиля работает в экономном режиме и достигается наилучшая эффективность катализатора, устраняющего вредные вещества из выхлопных газов.

Назначение датчиков – контроль кислорода либо остаточного топлива в отработанных газах для функционирования ДВС и котлов в экономном режиме и минимизации вредных выбросов угарного газа, оксида азота, углеводородов при помощи автоматики.

В каких системах применяются

Кислородные датчики позволяют измерять объемную долю кислорода в газах, присутствующих после сгорания топлива в ДВС и котлах, работающих на твердом топливе либо метане.

λ- зонды применяются в приборах, измеряющих долю кислорода в уходящих газах котлов на ТЭС и других промышленных предприятиях для наилучшей регулировки КПД сгорания топлива при помощи подачи воздуха в топку, в зависимости от показаний приборов.

Наиболее широкое использование датчики получили в автомобильной промышленности для автоматической регулировки подачи бензиново-воздушной смеси в цилиндры двигателя.

Классификация, устройство и принцип действия

Датчики подразделяют на виды в зависимости от материала активных элементов, наличия системы подогрева, конструктивных особенностей и принципа действия. Рассмотрим существующие типы зондов.

Циркониевые

Для данного типа датчиков в качестве твердого электролита гальванической системы – керамической, проницаемой для ионов кислорода мембраны, служит диоксид циркония, который проявляет рабочие свойства при температуре свыше 300˚С. Наконечник из твердотельного циркония покрывается тонкой прослойкой оксида иттрия для лучшей проходимости атомов кислорода, а с внешней и внутренней стороны, частично покрывается тонким слоем платины, выполняющей функцию электродов. На примере рис.1 рассмотрим λ-зонд в разрезе.

Рис.1

  1. Провода: сигнальный и питания нагревателя.
  2. Контактная пластина нагревательного провода.
  3. Стальной корпус, соединенный с кожухом, вставляемым резьбой в гнездо отверстия выхлопной трубы.
  4. Циркониевый электролит с наружной и внутренней платиновыми электродными пластинами.
  5. Нагреватель.
  6. Керамический теплоизолирующий элемент.
  7. Контактная плоскость.
  8. Металлический корпус с отверстиями для попадания уходящих газов.
Принцип работы

Он довольно прост. Во внутренней камере рабочего элемента с платиновым электродом находится обычный воздух, имеющий стандартную (эталонную) проницаемость кислорода со своим давлением на стенки циркониевого наконечника при его нагреве до 350-400˚С.

На наружный платиновый электрод поступают выхлопные газы, делающие проницаемость переменной величиной, в зависимости от объема кислорода в этих газах. Разность потенциалов на электродах появляется вследствие перемещения ионов кислорода со стороны большего давления в сторону с меньшим давлением.

Резкий перепад напряжения (примерно от 850 мВ до 75 мВ) при изменении наличия кислорода в выхлопе от смеси с излишками топлива и недостатком кислорода (богатой, где λ<1) до смеси с недостатком топлива и излишком кислорода (бедной, где λ>1), позволяет делать измерения с погрешностью около 5%.

Титановые

Рабочий элемент этого зонда – диоксид титана. Устройство датчика похоже на циркониевый, только не требует камеры с эталонной смесью воздуха. Принцип работы основан на изменении сопротивления материала при изменении объемной доли кислорода в выхлопе. Чем больше ионов кислорода, тем большее сопротивление возникает в рабочем элементе. Для функционирования системы необходима высокая температура нагрева двуокиси титана (свыше 600˚С) и постоянная подача питания на электронный блок управления – 5В.

Преимущества титановых зондов:

  • Прочность, небольшие размеры.
  • Отсутствие камеры с эталонной сравнительной смесью, что увеличивает их долговечность.
  • Быстрое достижение нагрева и рабочего состояния.

К недостаткам можно отнести более высокую цену, чем у циркониевых, что обусловило отказ производителей автомобилей применять их в современных моделях.

Широкополосные – LSU датчики

При помощи широкого диапазона измерения в областях с различным коэффициентом избытка воздуха (λ<1; λ>1), кислородные зонды этой конструкции получили универсальное применение в разнообразных типах двигателей (газовых, дизельных, внутреннего сгорания с принудительным зажиганием) и отопительных установках. Широкополосное устройство более точно подает сигнал на электронный блок управления о соотношении наличия кислорода и топлива в уходящих газах ДВС, что позволяет лучше контролировать уровень выхлопов.

По внешнему виду зонд похож на циркониевый, но принцип действия немного другой. Работа системы основана на поддержании постоянной разности потенциалов между электродами в пределах 0,45 В, соответствующей коэффициенту избытка воздушной смеси, равной единице.

Датчик состоит из двух рабочих элементов – циркониевого, выполняющего измерительную функцию и элемента для введения либо выведения кислорода из системы. Между рабочими элементами расположено удлиненное отверстие, размером от 20 до 50 мкм. В отверстии размещены два электрода для измерения и регулировки (накачивающий) объемной доли кислорода. В измерительное отверстие вставлен барьер, отделяющий его от уходящих газов и, регулирующий закачку либо откачку кислорода из него. Циркониевый элемент соприкасается с внешней атмосферой благодаря небольшому приточному каналу.

Если смесь, подающаяся в двигатель, обедненная на топливо, то уходящие газы богаты на кислород и он выводится из отверстия для измерения с помощью плюсового напряжения на выводящий рабочий элемент. В противном случае, на элемент подается напряжение с противоположным знаком, кислород входит в измерительное отверстие.

Электронная схема стремится удержать напряжение 0,45 В через, постоянно меняющееся напряжение на электродах элемента введения/выведения кислорода из системы, чтобы концентрация кислорода в отверстии соответствовала: λ = 1. В датчик вмонтирован нагреватель для достижения температуры 700˚С и выше, в зависимости от типа зонда.

Плюсы

Преимуществом широкополосных зондов можно считать:

  • Широкий диапазон измерений и регулировки кислорода в выхлопе.
  • Быстрый нагрев и приведение в рабочее состояние при запуске авто.
  • Широкий спектр применения.

Следует отметить, что лямбда зонды бывают с 2, 3, 4, 5 выводами. Устройства без подогрева обычно имеют 2 вывода – сигнальный и заземляющий. Широкополосные устройства имеют 5 и более выводов.

Методы диагностики

Диагностику датчиков желательно проводить каждые 10000 км пробега автомобиля либо при первых признаках неисправности зонда, которые описаны ниже.

Мультиметром

Очень часто причиной нерабочего состояния кислородного зонда является повреждение спирали нагревателя либо контакта с нагревателем. Так ли это, легко проверить мультиметром, переключив его в режим работы омметра. Обычно 3 и 4 контакт (в 4-х проводном датчике) подходят к нагревательному элементу. Значение сопротивления должно быть в пределах 4,5 – 5,5 Ом. Если показания превышают данное значение, то зонд требует замены, так как нагревательный элемент вышел из строя.

Для проверки сигнала, поступающего на электронный блок, нужно завести автомобиль, нажать на педаль газа, чтобы подержать двигатель в высокооборотном режиме в течение некоторого времени. Сигнальный провод зонда (обычно черный) подключаем к плюсовому щупу мультиметра, а минусовой щуп, соединяем с «землей», переключаем прибор в режим вольтметра (2000 мВ). При удержании педали газа и резком отпускании, показания прибора должны быть в пределах от 1000 мВ до 100 мВ. Если показания остаются неизменными в пределах 400 – 500 мВ при манипуляции с педалью газа, то зонд неисправен.

Осциллографом

Качество проверки осциллографом проявляется в возможности узнать временной промежуток изменения сигнала выходного напряжения. Для проверки необходимо подсоединить осциллограф к проводу, дающему сигнал на электронный блок (черному). Далее нужно завести двигатель и подождать прогрева до 70˚С. По мере прогрева датчика до 400˚С, прибор начнет показывать волнообразный график. При работе двигателя на оборотах около 3000, прибор должен показывать ровный волнообразный график с нижним пределом уровня сигнала (не менее 0,1 В) и высоким (не более 0,8 — 1 В).

Если на экране прочерчивается график в крайних (верхней или нижней) точках, а также в положении около 0,6 В при максимальной работе двигателя, то λ – зонд неисправен.

Основные причины выхода из строя

Причин поломки датчика кислорода может быть много, среди них, конечно же, и качество применяемого топлива. Рассмотрим главные:

  • Повреждение или встряска зонда вследствие неаккуратной езды (наезда на препятствие, яму).
  • Перегрев зонда из-за неисправности в блоке зажигания.
  • Засорение керамической поверхности продуктами сгорания некачественного бензина.
  • Неисправность в работе двигателя (попадание масла в выхлоп).
  • Замыкание в проводах датчика.

Поломка датчика может происходить постепенно, переводя работу двигателя в режим неправильной работы. На современных машинах стоит второй зонд после катализатора, что улучшает качество работы ДВС и защиту атмосферы от продуктов сгорания топлива.

Нюансы подключения

При поломке устройства, можно установить датчик, который рекомендует завод-изготовитель или похожий циркониевый зонд. Вот основные правила:

  • Цвета проводов датчика различаются, но цвет подающего сигнал на электронную схему, всегда темный.
  • «Земля» бывает желтого, белого, серого оттенков.
  • Для подключения 4-проводного зонда на место 3-проводного – соединяются с «землей» автомобиля провода заземления нагревателя и минусовой сигнальной системы. Провод нагревателя через релейную схему подсоединяется к плюсовому полюсу аккумулятора.

Подключение нового зонда лучше сделает специалист из автосервиса.

Советы и рекомендации

При первых признаках неправильной работы лямбда датчика (машина начинает резко дергаться при начале движения, не так быстро срабатывает педаль газа, на панели должны высвечиваться предупредительные сообщения, перегрев двигателя во время работы, неприятные токсичные газы из выхлопной трубы), необходимо определиться с некоторыми вопросами:

  • Точная установка неисправности зонда.
  • Правильный подбор нового датчика.
  • Не следует поддаваться желанию установить датчик, бывший в употреблении (неизвестен его остаточный ресурс), если хотите сберечь двигатель в хорошем состоянии.
  • Не нужно пытаться разобрать устройство, оно сделано герметично и не ремонтируется.

Желательно покупать оригинальный зонд либо универсальный (для двигателей определенного производителя).

prodatchik.ru

Распиновка лямбда зонда на 4 провода. Схема

Большинство циркониевых лямбда-зондов, которые ставятся на автомобили начиная 1999 года, имеют одинаковые цветовые дифференциации циркониевых датчиков. То же и с лямбда-зондами, выпускаемыми с применением титановых сплавов — распиновка у них соответствует одинаковым значениям, выведенным в таблице. Одна лишь разница — машин с лямбда-зондами на циркониевой основе очень много, титановые — редкость, но все же встречаются. Определение назначения каждого контакта лямбда-зонда можно определить, воспользовавшись специальными таблицами, которые будут представлены ниже.

Если сочетание цветов вашего датчика будет идентично сочетанию цветов одной из колонок предложенных таблиц ниже (циркониевые или титановые лямбды) — значит датчик имеет указанную конструкцию и распиновка лямбда зонда на 4 провода соответствует указанным в таблице данным.

Таблица распиновки датчиков лямбда-зонда

 

Назначение

Цветовые комбинации для циркониевых датчиков.

1

2

3

4

5

Нагреватель +

Чёрный

Фиолетовый

Белый

Коричневый

Чёрный

Нагреватель —

Чёрный

Белый

Белый

Коричневый

Чёрный

Сигнал +

Синий

Чёрный

Чёрный

Фиолетовый

Зелёный

Сигнал —

Белый

Серый

Серый

Бежевый

Белый

Назначение

Цветовые комбинации для титановых датчиков.

1

2

Нагреватель +

Чёрный

Красный

Нагреватель —

Чёрный

Белый

Сигнал +

Серый

Жёлтый

Сигнал —

Серый

Чёрный

 

Из чего состоит лямбда-зонд

cashbuzz.ru

Peugeot 307 Ne_Do_308 › Бортжурнал › Диагностируем работоспособность датчика кислорода (лямбда)

Всем привет. Итак, как-то я писал о программке VTS Agent www.drive2.ru/l/3584889/, оценила мне она тогда впрыск плохенько.

Проблема была у меня, провал с 3000 до 4000 об/мин — поэтому ничего удивительного в такой оценке. Проблему решили заменой ДАД www.drive2.ru/l/3756181/ Решил я снять данные еще раз и скормить программе, должна оценить работу впрыска лучше. Так оно и получилось.

Но оценка работы лямбды упала. Что ж, хорошо, что в программе хранятся все старые замеры, давайте изучать мат. часть работы лямбды и смотреть на графики.
Что такое датчик кислорода?
Этот датчик смонтирован на выхлопном коллекторе на входе в каталитический преобразователь и непрерывно выдает напряжение на блок управления, отражающее содержание кислорода в выхлопных газах.
Это напряжение, которое анализируется блоком управления, используется для коррекции времени впрыска.
Богатая смесь:
• напряжение датчика: 0.6 В-0.9 В.
Бедная смесь:
• напряжение датчика: 0.1 В-0.3 В.
Внутреннее нагревательное устройство позволяет быстро достигать рабочей температуры, в данном случае свыше 350°C. Эта рабочая температура достигается в течение 15 секунд.
Резистор нагрева управляется блоком управления при помощи прямоугольных сигналов с целью контроля температуры датчика кислорода.
Когда температура выхлопных газов выше 800°C, датчик кислорода больше не подогревается.
На определенных этапах работы двигателя система работает без обратной связи. Это означает, что блок управления игнорирует сигнал, посылаемый датчиком.
Эти этапы возникают:
• когда двигатель холодный (температура менее 20°C),
• при высокой нагрузке двигателя.

Причины преждевременного выхода из строя датчика кислорода:
1. Применение этилированного бензина или несоответствующей марки топлива.
2. Использование при установке датчика герметиков, вулканизирующихся при комнатной температуре или содержащих в своем составе силикон.
3. Перегрев датчика из-за неправильно установленного угла опережения зажигания, переобогащения топливо-воздушной смеси, перебоев в зажигании и т. д. (к этому можно отнести мой случай, неизвестно сколько машина ездила с плохо работающим ДАД? Так же предыдущая хозяйка меняла катушку, только не рассказала почему)
4. Многократные (неудачные) попытки запуска двигателя через небольшие промежутки времени, что приводит к накапливанию не сгоревшего топлива в выпускном трубопроводе, которое может воспламениться с образованием ударной волны.
5. Проверка работы цилиндров двигателя с отключением свечей зажигания.
6. Попадание на керамический наконечник датчика любых эксплуатационных жидкостей, растворителей и моющих средств.
7. Обрыв, плохой контакт или замыкание на «массу» выходной цепи датчика.
8. Негерметичность в выпускной системе. (это тоже можно отнести к моему случаю, была проблема с прокладкой между коллектором и катализатором)
Возможные признаки неисправности датчика кислорода:
1. Неустойчивая работа двигателя на малых оборотах.
2. Повышенный расход топлива. (После замены дад расход уменьшился, но все же я считаю, что он завышен для 1.6)
3. Ухудшение динамических характеристик автомобиля. (Возможно потеря мощности на низах, замена покажет, пока что в теории)
4. Характерное потрескивание в районе расположения каталитического нейтрализатора после остановки двигателя. (да, такое есть, я думаю это остывает катализатор, но мало ли это как-то связано)
5. Повышение температуры в районе каталитического нейтрализатора или его нагрев до раскаленного состояния.
6. Загорание лампы «СНЕСК ЕNGINЕ» при установившемся режиме движения.
Как понять насколько работоспособен датчик?
Вообще-то для этого потребуется осциллограф. Ну или специальный мотор-тестер (в случае с машиной Peugeot 307 это копия дилерского диагностического оборудования и программа Peugeot Planet 2000), на дисплее которого можно наблюдать осциллограмму изменения сигнала на выходе. Наиболее интересными являются пороговые уровни сигналов высокого и низкого напряжения (со временем, при выходе датчика из строя, сигнал низкого уровня повышается (более 0,2В — криминал), а сигнал высокого уровня — снижается (менее 0,8В — криминал)), а также скорость изменения фронта переключения датчика из низкого в высокий уровень. Есть повод задуматься о предстоящей замене датчика, если длительность этого фронта превышает 300 мсек. Это усредненные данные.
Как второй датчик кислорода проверяет эффективность работы каталитического нейтрализатора?
Датчик кислорода на выходе используется для соблюдения требований стандарта EOBD (Европейский стандарт по встроенной диагностике уровня вредных выбросов).
Он располагается после каталитического преобразователя и используется для проверки эффективности работы каталитического преобразователя.
Характеристики и нагревательное устройство для датчика кислорода на выходе такие же, как для датчика кислорода на входе.
Блок управления отвечает за анализ напряжения, выдаваемого датчиком кислорода на выходе. Это напряжение отражает содержание кислорода в выхлопных газах на выходе каталитического преобразователя.
Напряжение, выдаваемое датчиком кислорода на выходе, смещено относительно датчика кислорода на входе, поскольку выхлопные газы должны пройти через каталитический преобразователь прежде, чем достигнут датчика кислорода на выходе.
В новом каталитическом преобразователе химические реакции теоретически завершаются. Поскольку весь кислород используется для образования химических соединений, когда двигатель прогрет, низкое содержание кислорода на выходе каталитического преобразователя приводит к напряжению от 0.5 до 0.7 Вольт на клеммах датчика кислорода на выходе.
Однако в действительности сигнал демонстрирует некоторую волнистость несмотря на то, что каталитический преобразователь имеет хорошее состояние. Затем он со временем ухудшается, и характеристики каталитического преобразователя падают.
В зависимости от этого напряжения, блок управления анализирует эффективность каталитического преобразователя и качество сгорания, и исходя из этого решает, следует ли отрегулировать обогащение смеси или нет.

Меня по большей части интересует верхняя лямбда, она же первая, до катализатора. Именно она работает как обратная связь для приготовления смеси. Сначала снимаем ошибки, они отсутствуют. Потом прогреваем двигатель до 90 градусов и начинаем строить график. Газовал до 3000 на стоянке без нагрузки, вполне достаточно.
Вот старый замер, представлен в PP2000

Уже на нем видно, что во время нагрузки синусойду, или «заборчик» рисует не ровный, то сверху не дойдет до пика, то снизу не дорисует, на лямбде с нормальной чувствительностью «заборчик» ровный.
Вот тот же график, но уже в программе VTS Agent

до 1200-1400 оборотов лямбда тупит

Делаем вывод, ждать пока совсем лямбде по-плохеет и выдаст ошибку нет смысла, много топлива уйдет в трубу, покупка лямбды окупится на экономии топлива плюс машинка начнет радовать вернувшимися конями в строй на низах.
Как только приедет лямбда, обязательно сделаю очередной замер и скормлю программе VTS Agent, по идее она оценит лучше лямбду, а т.к. смесь будет точнее контролироваться и оценка впрыска улучшиться. Датчик по сервисбокс стоит у меня 1628HR, за оригинал, он же bosch в коробочке Citroen/Peugeot хотя безумно много 11485р, поэтому смотрим на то, что лежит в коробочке -это Bosch 0258006028. В Exist`e он 2560р, там же есть такая информация: «Рекомендуемый интервал технического обслуживания 160000 км». Заказал Китайский bosch 1780р (с учетом доставки в 300р) www.aliexpress.com/item/B…ugeot-206/1811532604.html Внимание 2х литровщикам, у вас датчик Bosch 0258006027, если будете заказывать по ссылке выше не забудьте указать продавцу в комментариях, хотя визуально датчики одинаковые, принцип работы тоже одинаковый, отличаются длинной проводки. У нижнего датчика (лямбда после катализатора) тоже рекомендованный интервал до замены 160 000 км, но будет бегать пока ошибку не засветит, т.к. на смесь не влияет.
Из бюджетного варианта, можно купить датчик от ВАЗ (4х контактый) от десятки, отрезать фишку от старого, отрезать фишку от ВАЗ`го и перепаять, только надо в распиновке не ошибиться, т.к. она разная для Peugeot и для ВАЗ. Распиновка для Peugeot следующаяя: 1й контакт: +12В подогрев кислородного датчика, 2й контакт: масса, 3й контакт: синал «+», 4й канал сигнал «-«, все контакты пронумерованы в фишке.

Всем хорошего дня.

Вот тут продолжение темы, после замены лямбды на новую.

www.drive2.ru

DENSO: как правильно установить универсальный лямбда-зонд

Предлагаем вашему вниманию техническую информацию от компании DENSO по установке универсальных кислородных датчиков.

Как правильно установить универсальный кислородный датчик?

1. Обрежьте провода нового кислородного датчика в соответствии с необходимой длиной.

ВАЖНО: Новый датчик, соединенный с имеющимся у вас коннектором, должен быть такой же длины, как и старый датчик с оригинальным коннектором.

2. Обрежьте провод старого кислородного датчика.

3. Зачистите провода нового датчика и коннектора от изоляции примерно на 7 мм каждый.

4. Обожмите стыковые соединения датчика и проводника специальными клещами и закройте термоусадочной трубкой (размер 22–16).

5. Нагревайте горячим воздухом термоусадочную изоляцию до тех пор, пока соединения не будут плотно закрыты.

 

 

Как правильно соединить провода кислородных датчиков по цветам?

1. Выясните, каких цветов провода используются на вашем старом датчике.

2. Подберите соответствующий универсальный кислородный датчик DENSO. Для всех датчиков DENSO существует два типа цветовых сочетаний кабелей в зависимости от артикула.

3. Соедините провода согласно данным, приведенным в таблице ниже:

 Старый (оригинальный) датчик Новый датчик DENSO
 Тип оригинального датчика 1Тип оригинального датчика 2Тип оригинального датчика 3Тип оригинального датчика 4Тип оригинального датчика 5 

DOX — 010…

DOX — 011…

DOX — 012…

DOX — 013…

DOX — 015…

Нагреватель +ЧерныйФиолетовыйБелыйКоричневыйЧерныйЧерныйФиолетовый
Нагреватель —ЧерныйБелыйБелыйКоричневыйЧерныйЧерныйБелый
Сигнал +ГолубойЧерныйЧерныйФиолетовыйЗеленыйГолубойЧерный
Сигнал —БелыйСерыйСерыйБежевыйБелыйБелыйСерый

Пример:

Оригинальный датчик имеет 4 провода со следующей цветовой комбинацией: 2 белых, черный и серый. Для вашего автомобиля подходит кислородный датчик DENSO арт. DOX-0107. Следовательно, провода должны быть соединены, как показано на картинке ниже:

 

arkona36.ru

Распиновка лямбда зонда — Диагностика Джип |

Наверняка множество читающих эту статью спрашивают, а для чего нам статья «Распиновка лямбда зонда»? Что там непонятного, все как на ладони, гугл в помощь и т.д. и т.п…. Ответ прост, как все простое: не у всех автоломателейлюбителей в голове живет каталог, в котором указаны цвета проводов лямбда зонда! Буквально через раз люди спрашивают меня, к каким проводам подключаться, какой провод из четырех кто и куда должен идти! Посему, быть этой статье 🙂

Итак, я поискал в инете и нашел очень интересную табличку, в которой расписаны основные цветовые «гаммы» 4-х контактных лямбда зондов, знакомимся с ней ниже:

Провода лямбда-зондаЗонд BoschЕсли зонд не BoschУниверсальный лямбда зонд Bosch
Тип 1Тип 2Тип 3
Сигнал лямбда-зонда (плюс) ЧерныйЛиловыйСинийБелыйЧерный
Масса (минус)СерыйСветло-коричневыйБелыйЗеленыйСерый
Подогрев (2 провода)1БелыйТемно-коричневыйЧерныйЧерныйБелый
1 полярность подогрева произвольная
Провода лямбда-зондаЗонд BoschЕсли зонд не BoschУниверсальный лямбда зонд Bosch
Тип 4Тип 5Тип 6
Сигнал лямбда-зонда (плюс) ЧерныйЧерныйБелыйЛиловыйЧерный
Масса (минус)СерыйСерыйБелыйСерый
Подогрев (2 провода)1БелыйБелыйКрасный, черныйКоричневыйБелый
1 полярность подогрева произвольная

Приведенная выше таблица подойдет для большинства случаев, в которых возникают вопросы.

jeep-diagnost.tk

Как проверить лямбда зонд? (решено) — 2 ответа

Перво-наперво при выходе из строя и неисправности лябды в поведении авто появляются несколько ощутимых последствий:

Затем, чтобы проверить лямбда-зонд, для начала можно выкрутить и провести визуальную проверку (так же как и визуальная проверка свечей может о многом рассказать).

На автомобилях устанавливается несколько видов лямбд, датчики могут быть с одним, 2-мя, 3-мя, 4-мя даже пятью проводами, но стоит запомнить что в любом из вариантов один из них является сигнальным (зачастую чёрный), а остальные предназначены для подогревателя (как правило они белого цвета).

Чем и как можно проверить лямбду

Для проверки потребуется цифровой вольтметр (лучше аналоговый вольтметром, поскольку у него время «дискретизации» значительно меньше чем у цифрового) и осциллограф если есть возможность, измерения будут более точнее. Перед проверкой следует прогреть авто поскольку лямбда правильно работать при температуре более 300C°.

Сначала ищем провод обогрева:

Заводим двигатель, разъем лямбды не разъединяем. Минусовой щуп вольтметра (обычная цешка) соединяем с кузовом автомобиля. Плюсовым щупом цешки “тыкаем” на каждый контакт провода и наблюдаем за показанием вольтметра. При обнаружении плюсового провода обогревателя, вольтметр должен показывать постоянные 12 В. Далее минусовым щупом вольтметра пытаемся найти минусовой провод подогревателя. Включаемся в оставшиеся контакты разъема датчика. При обнаружении минусового контакта, опять же вольтметр покажет 12 В. Оставшиеся провод, провода сигнальные.

Проверка лямбда-зонда тестером

Берём электронный милливольтметр постоянного напряжения и подсоединяем его параллельно ЛЗ («+» «-» к ЛЗ, — к массе), причём лямбда зонд должен быть подключен к контроллеру.

Когда двигатель прогреется (5-10 мин) затем нужно смотреть на стрелку вольтметра. Она должна периодически ходить между 0,2 и 0,8 В (т.е. 200 и 800 мВ, причём, если за 10 секунд произойдёт менее 8-и циклов — ЛЗ пора менять. Также к замене если напряжение «стоит» на 0,45 В.

Когда же напряжение всё время 0,2 или 0,9 В — то что-то со впрыском — смесь слишком бедная или слишком богатая. Поскольку напряжение датчика кислорода все время должно изменятся и скакать от ≈0,2 до 0,9V.

Имеется еще один быстрый способ проверки лямбда зонда. Следует сделать так:

Аккуратно прокалывается плюсовым контактом тестера (чёрный провод лямбды), другой контакт — на массу. На работающем моторе показания должны колебаться от 0,1 до 0,9V. Постоянные показания (к примеру, всё время 0,2) или показания, выходящие за эти рамки, или колебания с меньшей амплитудой говорят о неисправности зонда.

Исключения:

  • всё время 0,1 — мало кислорода
  • всё время 0,9 — много кислорода
  • Зонд исправен, проблема в чём-то другом.  

Если есть время и желание позаморачиватся можно провести несколько тестов на богатую и бедную смесь и дополнительно проверить датчик лямбда зонд.

  1. Отключите кислородный датчик от колодки и подключите его цифровому вольтметру. Заведите автомобиль, и, нажав педаль газа, увеличьте обороты двигателя до отметки 2500 оборотов в минуту. Используя устройство для обогащения топливной смеси, устройте снижение оборотов до 200 в минуту.
  2. При условии, что ваш автомобиль оборудован топливной системой с электронным управлением, выньте вакуумную трубку из регулятора давления топлива. Посмотрите на показания вольтметра. Если стрелка прибора приблизится к отметке 0.9 В, значит, лямбда зонд находится в рабочем состоянии. О неисправности датчика свидетельствует отсутствие реакции вольтметра, и показания его в пределах меньших отметки 0.8 В.
  3. Сделайте тест на бедную смесь. Для этого возьмите вакуумную трубку и спровоцируйте подсос воздуха. Если кислородный датчик исправен, показания цифрового вольтметра будут на уровне 0.2 В и ниже.
  4. Проверьте работу лямбда зонда в динамике. Для этого подключите датчик к разъему системы подачи топлива, и установите параллельно ему вольтметр. Увеличьте обороты двигателя до 1500 оборотов в минуту. Показатели вольтметр при исправном датчике должны быть на уровне 0,5 В. Другое значение свидетельствует о выходе из строя лямбда зонда.
Проверка напряжения в цепи подогрева

Для проверки наличия напряжения в цепи нужен вольтметр. Включаем зажигание и подсоединяем его щупами к проводам нагревателя (отсоединять разъем не можно, лучше проткнуть острыми иголками). Их напряжение должны быть равно тому, что выдает аккум на не запущенном двигателе (около 12В).

Если нет плюса нужно пройти цепь АКБ-предохранитель-датчик, поскольку он всегда идет напрямую, а вот минус поступает с ЭБУ, так что если нет минуса смотрим цепь до блока.

Проверка нагревателя лямбда зонда

Кроме как померить напряжения мультиметром, можно замерить еще и сопротивления для проверки исправности нагревателя (двух белых проводов), но нужно будет тестер переключить на Омы. В документации к определенному датчику обязательно указывается номинальное сопротивление (обычно оно около 2-10 Ом), ваша задача только проверить его и сделать вывод. На видео показан данный способ:

Проверка опорного напряжения датчика кислорода

Тестер переключаем на режим вольтметра, затем включив зажигание измеряем напряжение между сигнальным и проводом массы. В большинстве случаев опорное напряжение лямбда-зонда должно быть 0,45В.

etlib.ru

Как самостоятельно проверить датчик кислорода

Датчик кислорода

Прежде чем заменить датчик кислорода, нужно удостовериться, что именно он является причиной неправильной работы двигателя: провалы при разгоне, падение мощности, повышенный расход, троение двигателя. Для этого нам нужно проверить датчик кислорода.

Перечень возможных неисправностей лямбда-зонда (датчика кислорода):

  • неработающий подогрев;
  • потеря чувствительности — уменьшение быстродействия (как отремонтировать датчик (востановить чувствительность)?).

Как правило, смерть датчика чаще всего на автомобиле не фиксируется, если причина находится в чувствительности датчика. Но если произошел обрыв цепи подогрева датчика, то бортовой компьютер моментально выдаст вам ошибку.

Распиновка датчика кислорода

  • А- Контакт чувствительного элемента датчика (+).
  • B- Контакт нагревательного элемента датчика (+).
  • C- Контакт Чувствительного элемента датчика (-).

Схема датчика кислорода (лямбда-зонда)

Схема датчика

Проверка питания датчика (напряжение на датчике кислорода)

Прежде чем заменить датчик, нужно удостовериться, что на него поступает питание и исправны все цепи. Для этого открываем капот и отсоединяем разъем датчика (он прикреплен хомутом к патрубку системы охлаждения).

  1. Проверяем цепь нагревательного элемента. Берём тестер и его «минус» подключаем к двигателю, «плюс» крепим на контакт «В». Включаем зажигание и смотрим на показания тестера: должно показывать 12в. Если показания тестера меньше 12в или вообще отсутствуют, то либо разряжен аккумулятор (что мало вероятно), либо обрыв цепи питания (устраняем неисправность). Так же может быть неисправна эбу, но как правило, бортовой компьютер сразу свидетельствует о данной ошибке.
  2. Проверяем цепь чувствительного элемента. Измеряем напряжение между контактами «А» и «С». минус на «С» плюс на «А». Напряжение должно быть 0,45в. Если напряжение отсутствует или отличается на 0,02в и более – то неисправна цепь питания (нужно найти и устранить) или неисправен ЭБУ (что так же мало вероятно).

Полностью проверить датчик на работоспособность  можно только при помощи осциллографа, чего нет у большинства автолюбителей, поэтому я не вижу смысла описывать данную ситуацию. Скажу лишь то, что для проверки нужно будет искусственно прибеднять и обогащать топливную смесь и смотреть на показания датчика. Если датчик отъездил уже не мало – более 100.000км, то его можно смело заменить. Потому что, даже если он и рабочий, чувствительность заметно ухудшилась – что ведёт к лишним затратам на бензин.

Существуют так называемые «иммитаторы лямбда-зонда». Скажу сразу, что они не подойдут к нашим авто, т.к. ЭБУ не читает их сигналы.

Следует точно понимать принцип работы датчика. Обратите внимание на следующие ошибки.

Ошибка Р0131Низкий уровень сигнала датчика кислорода 1
Ошибка Р0132Высокий уровень сигнала датчика коленвала 1

Низкий уровень сигнала датчика означает, что смесь слишком богатая.

Высокий уровень датчика показывает что смесь слишком бедная.

Обратите внимание, что данные ошибки показывают состояние топливной смеси, а не фиксируют неисправность датчика. Поэтому, при возникновении данных ошибок, сперва нужно смотреть на давление топлива и наличие в системе впуска подсосов воздуха, а уже потом обращать внимание на сам датчик.

vaz-2114-lada.ru

Как проверить лямбда зонд тестером с 4 проводами

Современный автомобиль – это электромеханическая система, которая состоит из множества деталей и узлов, что связаны между собой совокупностью различных датчиков. Эти датчики поддерживают рабочее состояние авто и обеспечивают его продуктивную работу. Сегодня в этой статье мы будем вести речь про датчик кислорода (лямбда зонд). В частности ответим на вопрос как проверить лямбда зонд с 4 проводами тестером. Это самый распространенный тип датчика и он весьма важен.

Перед тем, как приступать к изучению и тестированию работоспособности ЛЗ мы рекомендуем кратко изучить его конструктивные особенности, виды и принцип действия.

Что такое лямбда зонд, принцип действия и его виды

Итак, датчик воздуха – это небольшое устройство, которое установлено в выпускном коллекторе любого современного автомобиля и служит для оценки концентрации остаточного кислорода в отработавших газах. Благодаря показаниям этого устройства компьютерный блок вашего автомобиля получает данные на основе которых производит приготовление горючей смеси. Лямбда зонд учитывает остаточную концентрацию кислорода в сгоревшем топливе и подает сигнал на электронику о том, что вновь поступающую горючую смесь нужно либо обогатить, либо обеднить воздухом. Разумеется то, что при любой неисправности лямбда зонда может пострадать работоспособность двигателя машины.

Помни! Для сгорания 1 кг. смеси топлива и воздуха, необходимо затратить около 15-ти кг. кислорода.

Устройство лямбда зонда

Современный датчик воздуха представляет собой небольшое конструктивное устройство внутри которого имеется ряд взаимосвязанных деталей.

Конструкция лямбда зонда

  1. Металлический корпус на котором имеется резьба. Она предназначена для фиксации датчика в посадочном отверстии;
  2. Изолятор изготовленный из керамики;
  3. Уплотнитель в виде кольца;
  4. Проводники;
  5. Защитная оболочка с отверстием для вентиляции;
  6. Контакт;
  7. Керамический наконечник;
  8. Электрический нагреватель;
  9. Отверстие для выпускного газа;
  10. Стальная оболочка.

Как правило, начало измерений отработавших газов наступает при температуре 310-400 градусов. Именно при такой температуре специальный наполнитель в датчике обретает электропроводимость. Пока температура не достигла нужного значения, электронный блок управления автомобиля берет показания с других датчиков, а уже потом с лямбда зонда. Особенность его работы заключается в том, что выхлопные газы и атмосферный воздух разделены емкостью с токогенерирующим составом. В следствии определенных химических воздействий на эту емкость со стороны выхлопа и со стороны воздуха возникает разница концентрации кислорода на основе чего вырабатываться электрический потенциал. Значения этого потенциала отправляются на блок управления автомобилем.

Все датчики кислорода делятся на четыре типа в зависимости от количества проводов в их конструкции:

1. Однопроводные;
2. Двухпроводные;
3. Трехпроводные;
4. Четырехпроводные.

Виды лямбда датчиков

Все вышеперечисленные лямбда зонды бывают узкополосные и широкополосные.

Основные причины неисправностей лямбда-зонда и последствия его поломки

После того, как мы определились с понятием и особенностями работы датчика кислорода, можно сделать вывод, что он играет ключевую функцию в нормальной работе двигателя внутреннего сгорания. Так что же может привести к поломке лямбда зонда и выхода его из строя? Существуют два аспекта в этом вопросе: внешние факторы и внутренние о которых читайте ниже.

  • Протекание в корпус датчика охлаждающей жидкости или же тормозной;
  • Уход за датчиком средствами, которые не предназначены для таких целей;
  • Некачественное топливо с чрезмерным содержанием свинца;
  • Перегрев датчика, который также случается при использовании плохого топлива.

После того, как лямбда зонд вышел из строя ваш автомобиль начнет подавать определенные признаки:

  • Существенные рывки при движении;
  • Чрезмерные расход топлива;
  • Плохая работа катализатора;
  • Плавающие обороты двигателя;
  • Излишки токсических отходов в отработавших газах.

Серьёзность всего вышеперечисленного должна наталкивать водителя на проверку лямбда зонда практически каждые 10 тыс. км. Его полная замена желательна после каждых 40 000 км пробега.

Проверка лямбда зонда с 4 проводами тестером. Методы проверки ЛЗ

Итак, мы подошли к тому вопросу, который волнует каждого автолюбителя: как же проверить датчик лямбда зонд в домашних условиях? Для этого вам понадобится обычный тестер (мультиметр) или вольтметр.

Лямбда зонд 4 провода

Первым делом необходимо прогреть двигатель, после чего произвести замеры сопротивления на проводах подогревателя. Как правило, это два белых провода полярность между которыми можно не соблюдать. Нормальное сопротивление между ними должно равняться от 2 до 10-ти Ом. Если это значение другое, то следовательно датчик неисправен.

График напряжений лямбда зонда

Идем далее. Теперь нужно минусовой провод тестера подключить на корпус двигателя. При этом плюсовой контакт подключите к сигнальному проводу самого датчика. Как правило это будет черный провод. На прогретом двигателе нажмите на педаль газа и наберите обороты до 3000 об/мин. Удерживайте педаль в этом положении около трёх минут. В это время производится прогрев лямбда зонда. Теперь вы можете проверить включение датчика кислорода.

Напряжение между корпусом двигателя и сигнальным (черным проводом) детали должно колебаться в районе от 0,2 до 1 вольта. За каждые прошедшие 10 секунд времени датчик должен включаться около 10-ти раз. В тех случая когда тестер будет показывать 0,4-0,5 вольта и не будет производиться включение, то можно сделать вывод о неисправности лямбда зонда.

Также вам нужно знать о том, что при резком нажатии на педаль газа тестер должен показывать напряжение около 1 вольта. При резком отпускании педали – ноль вольт.

На этом у нас всё. Надеемся что ваш датчик полностью исправен и выполняет возложенные на него функции. Если у вас остались вопросы, пожалуйста, оставляйте их в комментариях.

Интересное про лямбда-зонды

Основное назначение лямбда-зонда – информировать блок управления двигателем о том, насколько полно сгорает топливовоздушная смесь. Лямбда-зонд определяет количество кислорода в выхлопных газах, на основе этого и определяется состав топливовоздушной смеси.

Теория говорит о том, что на 1 кг бензина должно приходиться 14,7 кг воздуха. Тогда и топливо, и кислород сгорят полностью, без образования излишка вредных веществ. Да и топливо не будет вылетать в трубу.

Стехиометрическая пропорция 14,7:1 называется «фактором избыточного количества воздуха», обозначается греческой буквой «лямбда» (λ).

Если лямбда меньше 1, то топливовоздушная смесь богатая – доля бензина в ней больше. Если лямбда больше 1, то ТВС бедная, в ней доля бензина меньше.

 

На нашем YouTube-канале вы можете посмотреть разборку роботизированной КПП EGS6, снятой с Citroёn C4 Picasso.

 

 

Выбрать и купить б/у лямбда-зонд (датчик кислорода) вы можете в нашем каталоге контрактных запчастей.

 

Как работает узкополосный лямбда-зонд?

Под защитным металлическим колпачком лямбда-зонда находится чувствительный элемент, изготовленный из диоксида циркония. Эта керамика является твердым электролитом, то есть проводит электрический ток, но для газов она непроницаема. Данный чувствительный элемент снаружи и внутри имеет газопроницаемое платиновое контактное покрытие, соединенное с сигнальными проводами.

Рабочая температура керамического элемента – около 350°С. Ранние лямбда-зонды не имели принудительного подогрева, а нагревались выхлопными газами. Поздние варианты имеют встроенный подогреватель, который выводит их на рабочую температуру гораздо раньше.

Итак, внутренняя часть керамика сообщается с воздухом, а ее внешняя поверхность сообщается с отработавшими газами. Разница в концентрации молекул кислорода в выхлопных газах и в атмосферном воздухе (т.е. внутри и снаружи сенсора) вызывает перемещение ионов кислорода из области с высоким содержанием кислорода в область с низким содержанием. Ионы перемещаются через керамический элемент, который, как уже отмечено, является электролитом. Именно разница в количестве кислорода снаружи и внутри керамического сенсора вызывает сигнальное электрическое напряжение.

Напряжение в 0,45 Вольт соответствует 1 (λ = 1). Богатая топливовоздушная смесь генерирует напряжение до 0,9 Вольт, бедная – 0,1 Вольт. Так устроен и работает узкополосный лямбда-датчик. Он способен фиксировать отклонение от стехиометрии совсем в небольшом диапазоне (от 14,0 д 15,0:1), по сути, просто фиксирует отклонение от лямбды в ту или иную сторону.

 

 

К узкополосному датчику может быть подведено от 1 до 4 проводов. 3-4 провода говорят о наличии подогрева. Два белых провода питают нагреватель лямбда-зонда. На черном проводе – сигнал к ЭБУ, на сером – масса. Если 3 провода, то отсутствует провод на массу, датчик соединяется с ней через свой корпус.

Для диагностики узкополосного датчика нужно снять осцилограмму или посмотреть ее через диагностическое ПО. Сигнал должен быстро изменяться (не реже 1 раза в секунду) в пределах от 0,1 до 0,9 Вольт. Если сигнальное напряжение меньше и изменяется не так активно, то сенсор неисправен. Также лямбда-зонд должен активно реагировать на изменение состава топливовоздушной смеси. Внести коррективы в состав смеси можно извне. Для обогащения нужно «пшикнуть» во впуск пропаном – сигнал с сенсора должен подскочить до 0,9 Вольт. Для обеднения – создать подсос воздуха, сняв вакуумную трубочку. При этом сигнал должен провалиться до 0,1 вольта.

Можно поступить проще – открыть и закрыть дроссельную заслонку (нажав на педаль акселератора). Показания с лямбда зонда должны быстро измениться от бедной до богатой смеси и стабилизироваться. Этот способ удобен, если в выхлопной системе двигателя есть пара катализаторов и пара «верхних» лямбда-зондов перед ними. Такое решение встречается на 6-цилиндровых и V-образных моторах. Скорость реакции двух лямбда-зондов можно сравнить друг с другом. Как правило, неисправный будет медленно реагировать.

 

Работоспособность нагревательного элемента лямбда-зонда проверяется просто. Для начала, нужно убедиться, что от АКБ поступает питание – от 9 до 12 Вольт в зависимости от автомобиля. Далее следует измерить сопротивление нагревателя, которое должно составлять 2,3 – 4,3 Ома при 25°С.

Если датчик снят, то можно запитать его подогрев от АКБ, через несколько минут лямбда-зонд должен нагреться до 350°С.

 

Лямбда-зонд на основе оксида титана

Некоторое время на автомобилях использовались датчики кислорода на основе оксида титана. Как правило, в таком случае в выпускной системе только один такой датчик, к нему подведено три или 4 провода. Он более точный, чем циркониевый, дорогой. Такой датчик не сообщается с атмосферой, не генерирует напряжение, имеет увеличенный диапазон измерения. Он запитывается и работает почти как расходомер. То есть, запитывается через ЭБУ и выдает сигнал в виде напряжения. Сигнал с такого датчика непрерывно примерно 1 раз в секунду изменяется в диапазоне от 0,4 до 3,85-4,5 Вольт. Низкое сигнальное напряжение соответствует богатой смеси, высокое напряжение указывает на бедную смесь.

 

 

Широкополосный лямбда-зонд

Самое современное решение – широкополосный лямбда-зонд, также именуемый «датчик воздух/топливо» (A/F sensor). В его «косичке» — 5-6 проводов. Он измеряет состав топливовоздушной смеси во всём диапазоне по величине и направлению тока в сложном чувствительном элементе. Широкополосные датчики используются на бензиновых двигателях, работающих на бедной топливной смеси, на бензиновых моторах с непосредственным впрыском и на дизельных двигателях, т.к. они способны точно измерить состав топливовоздушной смеси. Рабочая температура широкополосного лямбда-зонда – 650°С.

 

Получая данные от кислородных датчиков, ЭБУ постоянно регулирует подачу топлива относительно количества поступающего в цилиндры воздуха. Но так как кислородный датчик в выпускной системе находится на некотором расстоянии от камер сгорания, то своевременность лямбда-регулирования далека от идеала. На практике состав топливовоздушной смеси постоянно отклоняется от лямбды (от единицы) на несколько процентов в ту или иную сторону примерно 1-2 раза в секунду.

 

 

Диагностика широкополосного лямбда-зонда

Интересная особенность широкополосного лямбда-зонда в том, что фиксируемое им сигнальное напряжение является выдуманным и существует только для наглядности. Этот сигнал можно увидеть диагностическим прибором, а его значение нужно сверять с эталонными данными от производителя конкретного автомобиля. Т.е. напряжение в 1,5 и в 3,3 Вольта может быть исправным, всё зависит от конкретного датчика и автомобиля. Сигнал должен быть постоянным и не изменяющимся. Сигнал должен изменяться при обогащении или обеднении смеси. Для этого, соответственно, можно распылить во впуск газ пропан или снять со впускного коллектора какой-нибудь вакуумный шланг или уплотнитель, чтобы появился подсос воздуха. Причем обогащенная ТВС генерирует уменьшение сигнального напряжения, бедная смесь приводит к увеличению сигнального напряжения. Т.е. параметры смеси по показаниям широкополосного датчика изменяются зеркально с кратковременной топливной коррекцией.

Как проверить 5-проводной датчик o2 |

Автор: Джонатан Кронк

Написано: 14 июля 2020 г.

Изображения в горошек / Polka Dot / Getty Images

Пятипроводной датчик кислорода считается широкополосным датчиком. Традиционные кислородные датчики имеют только один или три провода. Пятипроводная система позволяет датчику обрабатывать больше информации, в свою очередь создавая более точные измерения для отправки в компьютер двигателя.

Это позволяет компьютеру более точно обрабатывать точное количество кислорода, необходимое для поддержания соотношения воздух-топливо.Важно научиться правильно тестировать пятипроводной датчик кислорода, поскольку напряжение немного отличается от напряжения традиционных датчиков.

  • Пятипроводной датчик кислорода считается широкополосным датчиком.
  • Пятипроводная система позволяет датчику обрабатывать больше информации, что, в свою очередь, создает более точные измерения для отправки в компьютер двигателя.

Проехать на автомобиле десять минут; это позволит сенсору нагреться до нормальной рабочей температуры.Это идеально подходит для тестирования и обслуживания кислородного датчика.

Откройте капот автомобиля и найдите датчик O2. Датчик установлен на выпускном коллекторе. Обратитесь к руководству по ремонту, так как расположение может незначительно отличаться от производителя.

Отсоедините жгут проводов от датчика кислорода; нажмите на два боковых выступа, если они есть, и вытяните жгут из датчика.

Установите мультиметр на минивольты или значение «MV». Подсоедините положительный красный провод мультиметра к сигнальному проводу датчика O2.На 5-проводном кислородном датчике сигнальный провод является средним проводом. Подключите отрицательный черный провод к заземленной точке.

  • Откройте капот автомобиля и найдите датчик O2.
  • На 5-проводном кислородном датчике сигнальный провод является средним проводом.

Запустите двигатель и дайте датчику поработать в течение одной минуты. Монитор мультиметра; вы должны заметить скачки напряжения от высокого к низкому в диапазоне от 0,1 до 0,9 минивольта. Если мультиметр не регистрируется или не прыгает; датчик не имеет напряжения и подлежит замене.

Как работают 5-проводные датчики (Tech Edge)

Как работают 5-проводные датчики (Tech Edge)

При использовании 5-проводного (широкополосного) датчика мы делаем определенные предположения об окружающей среде, в которой используется датчик,
например, мы предполагаем, что датчик используется для измерения побочных продуктов выхлопа при достаточно полном сгорании.
Сгорание может быть внутренним, как в обычном автомобиле, или внешним сгоранием
как в печи или другом устройстве, потребляющем топливо и кислород.
Если эти условия изменить, это может привести к неправильным показаниям.Например, если происходит промах и несгоревшие капли топлива проходят через двигатель,
тогда датчик будет считывать обедненную смесь, поскольку он не обнаруживает жидкое топливо.
При настройке автомобиля не следует полагаться исключительно на показания датчика.
Позвольте своему здравому смыслу и небольшому знанию того, как работает датчик, направлять вас.

Для широкополосных датчиков требуется контроллер, поскольку они более сложны, чем стандартные узкополосные датчики.
Они более точны из-за своей сложности, но это означает, что для их работы требуется технически сложный контроллер.Сам датчик можно представить как две тесно связанные части, которые электрически нагреваются до тусклого тепла для считывания:

  • Узкополосный датчик для определения концентрации кислорода в небольшой камере.
  • Насосная ячейка, которая транспортирует ионы кислорода на поверхность этой небольшой камеры или с нее.

Как мы увидим, широкополосный датчик управляется током, который накачивается в насосную ячейку или из нее с помощью электроники широкополосного контроллера.
Это принципиально отличается от узкополосного датчика, который выдает свое узкополосное напряжение без какой-либо внешней электроники при нагревании до рабочей температуры.Чтобы понять широкополосный диапазон, мы должны сначала понять узкополосные датчики :

Узкополосные датчики

Узкополосные датчики имеют от одного до четырех проводов.
Один из проводов всегда будет сигнальным напряжением.
Второй провод можно использовать для изоляции заземляющего конца сигнала, чтобы уменьшить шум сигнала.
Трех- и четырехпроводные датчики добавляют нагревательный элемент, поэтому датчик начинает работать быстрее и надежнее.

Изображение слева показывает 4-проводную версию — в практических узкополосных конструкциях датчик часто имеет форму
гильза для максимального увеличения площади поверхности, контактирующей с выхлопными газами.Электрический нагреватель используется для повышения температуры диоксида циркония.
(ZrO 2 ) материал, из которого изготовлен чувствительный элемент.

Диоксид циркония (часто с добавлением оксида иттрия)
является важным веществом, которое сохраняет механическую жесткость при
способен проводить электрический ток в расплавленном (раскаленном) состоянии.
Ток датчика переносится ионами кислорода, которые становятся доступными только тогда, когда датчик достаточно горячий.
Платиновое покрытие одновременно является проводящим и способствует каталитической реакции.
между ионами кислорода и частично сгоревшим топливом.Уравнение Нернста
описывает напряжение, возникающее в результате этой каталитической реакции с участием ионов кислорода, платинового катализатора и выхлопных газов.

  • В с = (RT / 4F) * ln (pO 2 воздух / pO 2 exh )
    pO 2 = парциальное давление на границе газа

pO 2 xxx — это парциальное давление кислорода и удобное представление концентрации кислорода.
с каждой стороны кислородного датчика.Член RT / 4F можно представить как постоянную, умноженную на температуру T .

Это уравнение говорит о том, что в богатых смесях, где почти нет кислорода, но много свободного топлива,
напряжение В, с , создаваемое датчиком, будет достаточно высоким.

Вокруг стека становится доступным немного свободного кислорода, и напряжение, создаваемое датчиком, быстро падает.
График слева показывает, как V s быстро переключает с напряжения около 0.От 9 В до 0,1 В в очень маленьком диапазоне лямбда (или AFR).
Это быстрое переключение — одна из причин, по которой узкополосные датчики не точны в богатой области, где происходит большая часть настройки мощности.

Уравнение также говорит, что при более высоких температурах V s также будет выше.
Это показано на изображении справа.
Это еще одна важная причина, по которой узкополосные датчики не очень точны вдали от стандартных значений.
По мере изменения нагрузки на двигатель температура датчика будет изменяться, и он будет считывать другое значение, хотя фактическая лямбда (или AFR) не изменилась.Можно выполнить температурную компенсацию путем измерения импеданса датчика и вычисления его средней температуры,
и это то, что делают наиболее качественные лямбда-измерители, использующие узкополосный датчик (например, LSM-11), для повышения своей точности.

Насосная ячейка

Узкополосный датчик, описанный выше, обнаруживает напряжение В, , , , создаваемое ячейкой Нернста.
Можно пропустить ток через расплавленный электролит и запустить химическую реакцию.
таким образом, что кислород перекачивается (в форме ионов 2- ) от одной стороны ячейки к другой.

В смеси, обогащенной , ионы кислорода будут объединяться на каталитической поверхности элемента насоса с топливом с образованием воды и углекислого газа.
Когда все топливо будет израсходовано, свободного кислорода не будет, и полученная смесь будет стеична.
В бедной смеси (или даже в свободном воздухе) ток насоса меняется на противоположное, и свободный кислород откачивается.
до тех пор, пока ничего не останется, и полученная смесь также будет стоить.

На изображении справа показаны насосная ячейка и небольшая камера , в которую могут попадать выхлопные газы.Богатый или обедненный газ внутри камеры может быть восстановлен или окислен, чтобы получить стеичную смесь.
Важной частью насосной ячейки является размер входного отверстия насосной ячейки и ширина диффузионной камеры.
Поскольку все они подвержены производственным изменениям, ожидается разброс рабочих параметров,
и требуется схема, учитывающая это изменение.

Комбинация узкополосных и насосных ячеек -> 5-проводной датчик

Комбинация узкой полосы и насосных ячеек позволяет узкополосному датчику определять
смесь, возникающая в результате закачки кислорода в диффузионную камеру или из нее.Полученный датчик показан слева.
Чтобы сэкономить провода, ячейки VS (сенсор) и IP (насос) соединены вместе —
в любом случае они имеют общую поверхность реакции, так что это не проблема.

Проблема производственных вариаций, которая приводит к появлению датчиков разной чувствительности (разные токи накачки для одной и той же лямбды),
решается добавлением калибровочного компонента. Резистор (Rcal) подстреливается лазером после того, как датчик построен и испытан.
Лазер сжигает материал и увеличивает сопротивление резистора до тех пор, пока не будет получен стандартный ток Ip с известным значением лямбда.Если эта схема воспроизводится в самом контроллере, то каждый датчик будет автоматически откалиброван без дальнейшей калибровки.
Очевидно, что, поскольку каждый датчик откалиброван на заводе, а калибровочный компонент обычно находится в самом разъеме датчика,
если кто-то снимает разъем, значит датчик стал некалиброванным!

Многие контроллеры не имеют этой схемы, и для точной работы они должны пройти этап калибровки в открытом воздухе.
Также обратите внимание, что все широкополосные датчики с насосной ячейкой будут иметь как минимум 5 проводов от датчика.Шесть или семь проводов пойдут от разъема
(некоторые датчики используют калибровочный резистор в разъеме, оба конца которого свободны).

Следует отметить, что, когда датчик активно контролируется, смесь в диффузионной камере находится на уровне стехи, а напряжение Vs, близко к 450 мВ.
Сенсорная часть Vs дает небольшой эффект самовсасывания атмосферного кислорода в диффузионную камеру, но он намного меньше, чем действие насосной ячейки.Поскольку концентрация атмосферного кислорода (например, свободный воздух) используется в качестве эталона на одной стороне ячейки против , то поток воздуха к задней части ячейки
Датчик необходимо обслуживать — обычно это делается через оболочку, покрывающую провода к / от датчика. Оплетка провода не должна быть сужена!

Как работает широкополосный контроллер?

Задача контроллера — поддерживать температуру диффузионной камеры в узких пределах и контролировать
смесь там на стеич, прокачивая более или менее Ip ток,
и путем изменения направления Ip , когда смесь меняется с бедной на богатую.Для расчета лямбда смеси с помощью справочной таблицы выполняется точное измерение Ip .

Изображение справа представляет это в действии.
Операционный усилитель A выдает напряжение, представляющее разницу между Vs и опорным напряжением 450 мВ —
Идея состоит в том, чтобы поддерживать значение против на уровне 450 мВ.
Микроконтроллер, реализующий ПИД-регулятор
использует Vs в качестве входа, а выход PID управляет операционным усилителем B , сконфигурированным как источник тока, который вырабатывает ток Ip , используемый датчиком.Операционный усилитель C непосредственно измеряет ток накачки и выдает напряжение, которое измеряется микроконтроллером.
Микроконтроллер эффективно преобразует IP в
внутреннее лямбда-представление, которое используется для создания выходных напряжений, хранящихся в виде данных и т. д.

Чтобы контроллер вообще работал, чувствительный элемент должен быть нагрет до правильной рабочей температуры.
где ионы кислорода могут поддерживать необходимые каталитические реакции.
Температура датчика поддерживается на оптимальном уровне рабочей температуры путем измерения импеданса.
(электрическое сопротивление) либо насосной ячейки, либо сенсорной ячейки Vs .Более точные результаты обычно получаются при измерении температуры ячейки против (как это делается в устройствах Tech Edge ).
но это может быть немного сложнее, чем измерения импеданса ячейки IP .

Нагреватель большинства 5-проводных датчиков разработан для обеспечения максимальной мощности нагрева при более низком напряжении, чем напряжение аккумуляторной батареи автомобиля.
Это сделано для того, чтобы учесть потери напряжения в схемах контроллера и для более быстрого нагрева от холода,
но это также означает, что для длительного срока службы датчика контроллер должен быть осторожен, чтобы не повредить
датчик во время прогрева, когда токи достаточно большие, чтобы разрушить нагреватель, могут течь.

На изображении слева показаны основные части схемы управления нагревателем.
На самом деле это более сложная схема, чем схема измерения лямбда.
Операционный усилитель E , с помощью резистора с очень низким сопротивлением,
может напрямую измерять ток через нагреватель, и он используется во время разогрева до
контролировать среднюю мощность нагревателя в близких пределах (как указано в документации производителя датчика).
Также можно использовать ток нагревателя и напряжение батареи ( Ватт, ).
(по закону Ома)
для расчета приблизительной температуры нагревателя.Когда датчик достаточно нагрет для непосредственного измерения сопротивления сенсорной ячейки Vs
можно сделать более точное измерение температуры.
Малые импульсы напряжения прикладываются к Vs с помощью драйвера F , и снова для расчета используется закон Ома.
сопротивление ячейки считывания путем измерения различных напряжений операционным усилителем D .
Нагреватель включается на частоте около 30 Гц с помощью драйвера полевого транзистора нижнего уровня.
и алгоритм ПИД-регулирования нагревателя.

Подробнее…

Перейдите на главную страницу LSU WBo2.com для получения дополнительной информации о датчиках LSU.
Перейдите на домашнюю страницу WBo2 для получения дополнительной информации о широкополосной связи.

Технология 5-проводного лямбда-датчика

С момента введения стандартов выбросов Евро 4 * 5-проводный лямбда-зонд стал важным компонентом в современных двигателях, работающих на обедненной смеси и двигателях с прямым впрыском. Традиционно сигнал, отправляемый от лямбда-зонда в ЭБУ, был двоичным сигналом, указывающим на то, что топливовоздушная смесь была либо богатой, либо обедненной (обедненной или обеднённой). ВНИМАНИЕ !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!Двоичный датчик (или узкополосный датчик) работает только в этих двух крайних пределах; он не может сказать блоку управления двигателем, в какой степени смесь богатая или бедная.

Помимо основ

5-проводной датчик отправляет более сложное сообщение в ЭБУ. Сигнал больше не просто богатый или скудный; это постоянное и переменное напряжение от 0 до 5 вольт (где 0 указывает на очень бедную смесь, а 5 вольт указывает на очень богатую смесь). Это помогает двигателю поддерживать стехиометрическую ** топливно-воздушную смесь, поскольку ЭБУ может регулировать впрыск топлива в соответствии с этими измерениями, предоставляемыми лямбда-датчиком.

Почему провода имеют значение?

1 st провод = напряжение сигнала

2 nd провод = изолирует землю сигнала для уменьшения шума сигнала

3 rd и 4 th провода = нагревательный элемент, поэтому датчик начинает работать быстрее и надежнее ***

5 th провод = определяет, насколько соотношение воздух-топливо слишком богатое или бедное

Наличие

5-проводные (или широкополосные) датчики соотношения воздух-топливо (также известные как AFR или датчики сжигания обедненной смеси) теперь доступны в диапазоне Cambiare, который указан в MAM Autocat, Epicor Mastercat и собственном онлайн-каталоге Cambiare, доступ к которому можно получить бесплатно заряд на www.cambiare-ve.com

5-проводные ламда-датчики Cambiare подходят для популярных приложений, в том числе:

  • Audi A3 (08>)
  • Ford Fiesta (08>)
  • — цена: + 0 руб.

  • Mercedes C-Class (07>), Smart (07>)
  • Vauxhall Astra (05>), Corsa (07>)
  • Volkswagen Golf (10>), Passat (05>)

* Евро 4 применяется к новым типам моделей, утвержденным 1 января 2005 г. или после этой даты, и применяется ко всем моделям с 1 января 2007 г.

** стехиометрический = точка, в которой соотношение воздух-топливо обеспечивает полное сгорание (14.7 частей воздуха на 1 часть топлива)

*** узкополосные датчики имеют рабочую температуру в районе 316 ° C. 5-проводной датчик работает в диапазоне от 632 ° C до 815 ° C

Широкополосные датчики O2 и датчики воздуха / топлива (A / F)

Широкополосные датчики кислорода (которые также могут называться датчиками воздушного топлива с широким диапазоном действия (WRAF)) и датчиками воздуха / топлива (A / F) заменяют обычные датчики кислорода во многих последних моделях автомобилей.

Широкополосный датчик O2 или датчик A / F — это, по сути, более умный датчик кислорода с некоторыми дополнительными внутренними схемами, которые позволяют ему точно определять соотношение воздух / топливо в двигателе.Как и обычный датчик кислорода, он реагирует на изменение уровня кислорода в выхлопных газах. Но в отличие от обычного кислородного датчика выходной сигнал широкополосного датчика O2 или датчика A / F не изменяется резко, когда топливно-воздушная смесь становится богатой или обедненной. Это делает его более подходящим для современных двигателей с низким уровнем выбросов, а также для двигателей с улучшенными характеристиками.

Выходы датчика кислорода

Обычный кислородный датчик — это скорее индикатор богатой / бедной смеси, потому что его выходное напряжение подскакивает до 0.От 8 до 0,9 В при богатой топливно-воздушной смеси и падает до 0,3 В или менее при обедненной топливно-воздушной смеси. Для сравнения, широкополосный датчик O2 или датчик A / F выдает постепенно изменяющийся сигнал тока, который соответствует точному соотношению воздух / топливо.

Другое отличие состоит в том, что выходное напряжение датчика преобразуется его внутренней схемой в сигнал переменного тока, который может распространяться в одном из двух направлений (положительном или отрицательном). Текущий сигнал постепенно увеличивается в положительном направлении, когда топливно-воздушная смесь становится беднее.В «стехиометрической» точке, когда топливно-воздушная смесь идеально сбалансирована (14,7 к 1), что также называется «лямбда», ток от датчика прекращается, и ток не течет ни в одном из направлений. И когда соотношение воздух / топливо становится все более богатым, ток меняет направление и течет в отрицательном направлении.

PCM отправляет управляющее опорное напряжение (обычно 3,3 В для датчиков Toyota A / F, 2,6 В для широкополосных датчиков Bosch и GM) на датчик по одной паре проводов и контролирует выходной ток датчика по второму набору проводов. .Выходной сигнал датчика затем обрабатывается PCM и может быть считан на сканирующем приборе как соотношение воздух / топливо, значение коррекции топлива и / или значение напряжения в зависимости от приложения и возможностей отображения сканирующего прибора.

Для приложений, которые отображают значение напряжения, все, что меньше опорного напряжения, указывает на богатое соотношение воздух / топливо, в то время как напряжения выше опорного напряжения указывают на бедное соотношение воздух / топливо. В некоторых ранних приложениях Toyota OBD II PCM преобразует напряжение датчика A / F, чтобы оно выглядело как напряжение обычного датчика кислорода (это было сделано для соответствия требованиям к отображению ранних правил OBD II).

Как работает широкополосный датчик O2

Внутренне широкополосные датчики O2 и датчики A / F похожи на обычные плоские датчики кислорода из диоксида циркония. Внутри защитного металлического конуса на конце датчика находится плоская керамическая полоса. Керамическая полоса на самом деле является двойным чувствительным элементом, который сочетает в себе кислородный насос с «эффектом Нерста» и «диффузионный зазор» с кислородным чувствительным элементом. Все три ламинированы на одной керамической полосе.

Выхлопной газ попадает в датчик через вентиляционные отверстия или отверстия в металлическом кожухе над наконечником датчика и вступает в реакцию с двойным чувствительным элементом.Кислород диффундирует через керамическую подложку на чувствительном элементе. Реакция заставляет ячейку Нерста генерировать напряжение, как в обычном кислородном датчике. Кислородный насос сравнивает изменение напряжения с управляющим напряжением от PCM и уравновешивает одно с другим, чтобы поддерживать внутренний кислородный баланс. Это изменяет ток, протекающий через датчик, создавая положительный или отрицательный сигнал тока, который указывает точное соотношение воздух / топливо в двигателе.

Текущий расход небольшой, обычно около 0.020 ампер или меньше. Затем PCM преобразует аналоговый выходной ток датчика в сигнал напряжения, который затем может быть считан на вашем диагностическом приборе.

В чем разница между широкополосным датчиком O2 и датчиком A / F? Широкополосные датчики 2 обычно имеют 5 проводов, в то время как большинство датчиков A / F имеют 4 провода.

ЦЕПЬ НАГРЕВАТЕЛЯ ДАТЧИКА O2

Как и обычные кислородные датчики, широкополосные датчики O2 и датчики A / F также имеют внутреннюю цепь нагревателя, которая помогает им быстро достичь рабочей температуры.Для правильной работы широкополосным датчикам и датчикам A / F требуется более высокая рабочая температура: от 1292 до 1472 градусов по Фаренгейту по сравнению с примерно 600 градусами по Фаренгейту для обычных кислородных датчиков. Следовательно, если цепь нагревателя выходит из строя, датчик может не выдавать надежный сигнал.

В цепь нагревателя подается питание через реле, которое включается, когда двигатель запускается, и реле впрыска топлива находится под напряжением. Схема нагревателя может потреблять до 8 ампер на некоторых двигателях и обычно имеет широтно-импульсную модуляцию (ШИМ) для изменения количества тепла в зависимости от температуры двигателя (это также предотвращает перегрев и выгорание нагревателя).Когда двигатель холодный, продолжительность включения (по времени) цепи нагревателя будет выше, чем при горячем двигателе. Сбой в цепи нагревателя обычно включает контрольную лампу неисправности (MIL) и устанавливает диагностический код неисправности (DTC) P0125.

Проблемы с датчиком кислорода

Как и обычные кислородные датчики, широкополосные датчики O2 и датчики A / F подвержены загрязнению и старению. Они могут стать вялыми и медленно реагировать на изменения в топливно-воздушной смеси, поскольку загрязняющие вещества накапливаются на чувствительном элементе.Загрязнения включают фосфор моторного масла (изношенных направляющих и колец клапанов), силикаты антифриза (протекающая прокладка головки или впускные прокладки или трещины в камере сгорания, из которых вытекает охлаждающая жидкость) и даже серу и другие присадки в бензине. Датчики рассчитаны на пробег свыше 150 000 миль, но могут не пройти это расстояние, если двигатель горит маслом, развивает внутреннюю утечку охлаждающей жидкости или получает плохой газ.

Датчики

Wideband 2 и датчики A / F также могут быть обмануты утечками воздуха в выхлопной системе (негерметичные прокладки выпускного коллектора) или проблемами сжатия (такими как негерметичные или сгоревшие выпускные клапаны), которые позволяют несгоревшему воздуху проходить через двигатель и попадать в него. выхлоп.

Диагностика широкополосного датчика A / F

Как правило, система OBD II обнаруживает любые проблемы, влияющие на работу датчиков кислорода или A / F, и устанавливает код неисправности, соответствующий типу неисправности. Общие коды OBD II, которые указывают на неисправность в цепи нагревателя датчика O2 или A / F, включают: P0036, P0037, P0038, P0042, P0043, P0044, P0050, P0051, P0052, P0056, P0057, P0058, P0062, P0063, P0064.

Коды, указывающие на возможную неисправность самого датчика кислорода, включают любой код от P0130 до P0167.Могут существовать дополнительные коды OEM «расширенный» P1 «, которые будут различаться в зависимости от года выпуска, марки и модели автомобиля.

Симптомы неисправного широкополосного датчика O2 или датчика A / F по существу такие же, как и у обычного датчика кислорода: двигатель работает на обогащенной смеси, низкая экономия топлива и / или сбой выбросов из-за более высоких, чем обычно, уровней монооксида углерода (CO ) в выхлопе.

Возможные причины, помимо неисправности самого датчика, включают плохие соединения проводки или неисправное реле цепи нагревателя (если есть коды нагревателя), или неисправность проводки, негерметичная прокладка выпускного коллектора или негерметичные выпускные клапаны, если есть коды датчиков, указывающие на обедненную смесь состояние топлива.

Что проверять: как датчик реагирует на изменения в соотношении воздух / топливо. Подключите диагностический прибор к диагностическому разъему автомобиля, запустите двигатель и создайте мгновенное изменение в радиомодуле воздух / топливо, щелкнув дроссель или подавая пропан в корпус дроссельной заслонки. Ищите отклик от широкополосного датчика O2 или датчика A / F. Отсутствие изменений в указанном соотношении воздух / топливо, значении лямбда, значении напряжения датчика или номере краткосрочной корректировки топлива будет указывать на неисправный датчик, который необходимо заменить.

Другие PIDS диагностического прибора, на которые следует обратить внимание, включают состояние монитора нагревателя кислорода OBD II, состояние монитора датчика кислорода OBD II, состояние контура и температуру охлаждающей жидкости. Состояние мониторов сообщит вам, провела ли система OBD II самопроверку датчика. Состояние контура сообщит вам, использует ли PCM вход широкополосного датчика O2 или A / F для управления соотношением воздух / топливо. Если система остается в разомкнутом контуре после прогретого двигателя, проверьте возможный неисправный датчик охлаждающей жидкости.

Другой способ проверить выходной сигнал широкополосного датчика O2 или датчика A / F — это подключить последовательно цифровой вольтметр или графический мультиметр к опорной линии напряжения датчика (см. Схему подключения для правильного подключения).Подключите черный отрицательный провод к концу опорного провода датчика, а красный положительный провод к концу провода PCM. Затем измеритель должен показывать увеличение напряжения (выше опорного напряжения), если топливно-воздушная смесь бедная, или падение напряжения (ниже опорного напряжения), если смесь богатая.

Выходной сигнал широкополосного датчика O2 или датчика A / F также можно наблюдать на цифровом запоминающем осциллографе, подключив один вывод к опорной цепи, а другой — к цепи управления датчика.Это сгенерирует форму волны, которая изменяется в зависимости от соотношения воздух / топливо. Прицел также можно подключить к проводам нагревателя датчика для проверки рабочего цикла цепи нагревателя. Вы должны увидеть прямоугольную волну и уменьшение продолжительности включения по мере прогрева двигателя.

Технические советы по широкополосному датчику кислорода

* На 5-проводных датчиках «обедненного воздуха, топлива» (LAF) Honda 8-контактный контакт разъема датчика содержит специальный «калибровочный» резистор. Величину резистора можно определить путем измерения между выводами 3 и 4 с помощью омметра, и оно будет равно 2.4K Ом, 10 кОм или 15 кОм в зависимости от приложения. Если разъем поврежден и его необходимо заменить, стоимость замены должна быть такой же, как у оригинала. Опорное напряжение от PCM к датчику на этих двигателях составляет 2,7 вольт.

* Saturn также использует специальный подстроечный резистор в разъеме широкополосного датчика O2 (контакты 1 и 6). Резистор обычно составляет от 30 до 300 Ом. Поставляемое PCM опорное напряжение составляет от 2,4 до 2,6 вольт.

* Если датчик O2, широкополосный датчик O2 или датчик A / F вышел из строя из-за загрязнения охлаждающей жидкости, не заменяйте датчик, пока не будет заменена протекающая прокладка головки или головка блока цилиндров.Новый датчик скоро выйдет из строя, если утечка охлаждающей жидкости не будет устранена.

* Некоторые ранние приложения Toyota с датчиками A / F обеспечивают «смоделированное» напряжение датчика O2, которое отображается на диагностическом приборе. Фактическое значение было разделено на 5, чтобы соответствовать ранним правилам OBD II. С тех пор эти правила были пересмотрены, но имейте в виду, если на вашем диагностическом приборе

появится «фанковый» дисплей

Щелкните здесь, чтобы загрузить или распечатать эту статью.


Другие статьи о датчиках двигателя:

Датчики кислорода: диагностика и замена

Расположение датчиков кислорода

Определение датчиков двигателя

Датчики температуры воздуха

Датчики охлаждающей жидкости

Датчики положения коленчатого вала CKP

Датчики MAP

Датчики массового расхода воздуха

VAF

Датчики расхода воздуха

VAF Датчики положения дроссельной заслонки

Общие сведения о системах управления двигателем

Модули управления трансмиссией (PCM)

PCM с флэш-перепрограммированием

Все о бортовой диагностике II (OBD II)

Обнуление диагностики OBD II

Диагностика сети контроллеров

(CAN)

Щелкните здесь, чтобы увидеть больше технических статей Carley Automotive

Тестирование Bosch LSU 4.2 широкополосных датчика кислорода

Все значения, указанные в образце сигналов , являются типичными и применимы не ко всем типам двигателей.
Канал A показывает значение напряжения измерительной ячейки кислородного датчика.
Канал B показывает напряжение ячейки насоса кислородного датчика.
Канал C указывает управление с широтно-импульсной модуляцией (ШИМ) цепи нагревателя кислородного датчика. Канал D показывает ток через цепь нагревателя, управляемую ШИМ на канале C.
Математический канал указывает ток в ячейке насоса, полученный по формуле Канал B / 38,7 Ом.

Диагностика формы сигнала

Конкретные условия и результаты испытаний см. В технических данных автомобиля

Типичные значения (двигатель при правильной рабочей температуре):

Двигатель на холостом ходу: Датчик кислорода Измерительная ячейка Напряжение должно оставаться почти стабильным на уровне 450 мВ независимо от состояния заправки двигателя.
Двигатель на холостом ходу: Датчик кислорода Напряжение элемента насоса будет расти и падать в зависимости от уровня содержания кислорода в выхлопной системе. При нормальных условиях работы напряжение будет оставаться фиксированным на уровне 0 В, что указывает на правильное стехиометрическое соотношение воздух-топливо 14,7: 1 (лямбда 1,0) Значения напряжения и тока элемента насоса имеют следующие характеристики:

  • Лямбда> 1.0 (Lean) уменьшение напряжения на ячейке накачки, увеличение тока (+)
  • Лямбда <1.0 (Rich) увеличение напряжения ячейки накачки, уменьшение тока (-)
Мгновенный тест WOT: Указывает на небольшое повышение напряжения Насосной ячейки в точке WOT (+ 30 мВ), поскольку содержание кислорода в выхлопной системе падает из-за ускоренного обогащения (кислород закачивается в измерительную камеру ) ).
Прекращение подачи топлива из-за перебега : Указывает на падение напряжения насосного элемента (-158 мВ) во время прекращения подачи топлива из-за перебега двигателя. Следовательно, содержание кислорода в выхлопной системе увеличится. (Кислород откачивается из измерительной камеры . )

Переключение напряжения насосного элемента во время WOT и перебега подтверждает правильность работы кислородного датчика. Реакция на ускорение и замедление двигателя должна быть практически мгновенной, подтверждая, что время отклика датчика кислорода является эффективным.Активность ячейки насоса обычно измеряется с помощью миллиамперных зажимов, а не регистрируется напряжение. Учитывая, что значение сопротивления цепи насосного элемента известно из теста, проведенного на этапе , шаг 2 выше, мы можем преобразовать зарегистрированное напряжение элемента насоса в текущее значение, используя закон Ома (ток = вольт / сопротивление), поэтому устранение необходимости в зажиме миллиампер.

См. Пункт 7 ниже и Пример формы сигнала 2 , где математический канал используется для выполнения этого вычисления и отображения тока ячейки накачки в качестве дополнительной формы сигнала.

Двигатель работает: Подтверждает максимальный ток цепи нагревателя (1,6 А). Форма волны тока нагревателя должна отражать сигнал ШИМ, наблюдаемый в точке 6.
Двигатель работает: Подтверждает хорошее ШИМ-управление (> 2 Гц) нагревательного элемента кислородного датчика при переключении напряжения с 0 В на 13,5 В прибл. Чувствительный элемент в кислородном датчике требует минимальной рабочей температуры 300 ° C, и его необходимо будет контролировать в течение всего времени работы двигателя, чтобы обеспечить эффективное функционирование при сохранении надежности нагревательного элемента.

Примечание: Могут быть случаи, когда ШИМ-управление кислородным датчиком останавливается PCM (во время начального WOT). Это зависит от производителя и в конечном итоге способствует снижению расхода топлива и выбросов за счет снижения электрической нагрузки на автомобиль.

PCM может также изменять ШИМ-регулирование во время процесса разогрева, чтобы обеспечить достаточное рассеивание воды / конденсата в различных рабочих условиях окружающей среды.

Захват формы сигнала остановлен: В приведенных выше примерах сигналов не измеряется напрямую ток, протекающий через ячейку насоса , но измеряется напряжение, которое также будет изменяться пропорционально протеканию тока (канал B).

Учитывая значение сопротивления насосной ячейки , было измерено и подтверждено значение сопротивления цепи , равное примерно 38,7 Ом. мы можем включить это значение в 5-й черный математический канал , чтобы преобразовать напряжение насосной ячейки , измеренное с помощью канала B, в значение тока по закону Ома:
Ток = напряжение / сопротивление. I = V / R

Пока осциллограф собирает данные из , канал B , вы заметите, что в конце каждого снимка экрана появится пятый черный математический канал .При остановке захвата (нажмите пробел или кнопку остановки) на экране появится математический канал . Используя буфер осциллограмм, вы можете прокручивать свои захваты и измерять ток Pump cell из математического канала, который прямо пропорционален напряжению Pump cell .

Измерение активности широкополосного датчика кислорода с использованием метода падения напряжения, сопровождаемого законом Ома, устраняет необходимость в дорогостоящих миллиамперных клещах для измерения крошечных значений тока в диапазоне от 0.От 5 мА до 3,5 мА.

Дополнительная информация

Bosch Lambda Sensor Universal (LSU) 4.2 широкополосный датчик кислорода

Современные нормы выбросов требуют более жесткого контроля систем управления двигателем во всех диапазонах оборотов двигателя и нагрузок. Традиционный датчик кислорода может точно определять стехиометрическое соотношение воздух-топливо при 14,7: 1 (лямбда 1,0) с выходным сигналом примерно 450 мВ. Однако за пределами стехиометрической точки традиционный кислородный датчик будет выдавать либо сигнал богатой смеси (900 мВ), либо сигнал бедной смеси (100 мВ) без указания того, насколько богатая или насколько бедная .Таким образом, управление двигателем будет компенсировать это путем регулировки подачи топлива (управление с обратной связью) вперед и назад (богатая / обедненная) в попытке поддерживать правильное стехиометрическое соотношение воздух-топливо. Поэтому традиционный кислородный датчик мог работать точно только в очень узком диапазоне соотношений воздух-топливо (14,7: 1), отсюда и название Узкополосный кислородный датчик .

Потребность в повышенной точности, более быстром времени отклика и надежности привела к модернизации узкополосного датчика кислорода до стандартного промышленного датчика кислорода, используемого сегодня всеми производителями, широкополосного датчика кислорода .

Широкополосный датчик кислорода часто называют широкополосным датчиком или датчиком воздушно-топливного отношения (датчик AFR) и может быть установлен как на бензиновых, так и на дизельных двигателях.

Название широкополосное происходит от способности датчика точно определять соотношение воздух-топливо в широком диапазоне от 10: 1 до 20: 1 (20: 1 — окружающий воздух), в отличие от способности узкополосного датчика обнаруживать только стехиометрическое соотношение 14,7 : 1.

Однако широкополосный датчик кислорода включает часть рабочих характеристик узкополосного датчика в виде измерительной ячейки .Измерительная ячейка подвергается воздействию атмосферного воздуха с одной стороны (эталонный воздух) и кислорода выхлопных газов в измерительной камере с другой. Предполагая, что содержание кислорода в измерительной камере поддерживается на заданном уровне, 450 мВ выводится из измерительной ячейки широкополосного датчика кислорода на PCM (канал A).

Поддержание правильного уровня кислорода в измерительной камере имеет первостепенное значение для обеспечения того, чтобы выходное напряжение измерительной ячейки оставалось как можно ближе к 450 мВ во всех условиях заправки.Это достигается насосной ячейкой .

Характеристики насосной ячейки таковы, что в зависимости от количества и направления тока, протекающего через насосную ячейку (с управлением PCM), кислород может закачиваться в измерительную камеру или из нее, , таким образом, поддерживая 450 мВ. выход Измерительная ячейка .

Таким образом, ток, протекающий через насосный элемент , используется для прямого и точного определения соотношения воздух-топливо в широком спектре в результате содержания кислорода в выхлопных газах.

Управление нагревательным элементом широкополосного датчика кислорода имеет решающее значение для правильной работы датчика. Кислородные датчики, которые остаются ненагретыми, со временем «забиваются» и требуют замены, в то время как электрохимические реакции внутри датчика, которые обеспечивают транспортировку кислорода и генерацию напряжения, просто не могут происходить, если температура кислородного датчика не поддерживается.

Рисунок 6

Знакомство с датчиками кислорода широкого диапазона Nissan

Мой путь начинается с Nissan Altima 2005 года выпуска.Автомобиль проверялся в рамках подготовки к испытаниям на выбросы, и мы всегда использовали общее правило: если вы хотите добиться хороших характеристик двигателя и выбросов, автомобиль должен находиться в режиме контроля топлива. Есть много автомобилей, где кислородный датчик может использоваться как обычный инструмент для реализации этой концепции. Это была довольно простая задача для кислородных датчиков из диоксида циркония. Но у этого автомобиля был датчик кислорода другого типа. Это широкополосный датчик кислорода с соотношением воздух / топливо Bosch LSU 4.9 (5-проводной).Первый вопрос, который приходит в голову, — как работает этот датчик?

В 1997 году компания Bosch разработала плоский керамический элемент из диоксида циркония, а не гильзу для своего датчика кислорода. Название «планарный» было использовано потому, что чувствительный элемент представляет собой плоскую керамическую полоску толщиной около 1,5 мм. Новая конструкция очень похожа на датчик диоксида циркония с наконечником, но эта «толстопленочная» конструкция, как ее называют, делает его меньше и легче, а также более устойчивым к загрязнениям.Новый нагревательный элемент также требует меньше электроэнергии и доводит чувствительный элемент до рабочей температуры примерно за 10 секунд. Этот новый широкополосный датчик соотношения воздух / топливо Bosch LSU 4.X сочетает в себе чувствительную к кислороду ячейку «Нернста» плоского датчика с «кислородным насосом» для создания устройства, которое может фактически измерять соотношение воздух / топливо.

Ячейка Нернста по-прежнему воспринимает кислород так же, как и обычный датчик O2 с наконечником. Когда есть разница в уровнях кислорода на сенсорном элементе из диоксида циркония, ток течет с одной стороны на другую и создает напряжение (, рис. 1, ).(Типичное напряжение на ячейке Нернста = 0,45 В)

Рисунок 1

Чтобы добиться большей точности, кислородный насос использует нагретый катод и анод для отвода некоторого количества кислорода из выхлопных газов в «диффузионный» зазор между двумя компонентами. Ячейка Нернста и кислородный насос подключены друг к другу таким образом, что требуется определенное количество тока для поддержания сбалансированного уровня кислорода в диффузионном зазоре. Величина тока, необходимая для поддержания этого баланса, прямо пропорциональна уровню кислорода в выхлопных газах.Это дает компьютеру двигателя точные измерения воздуха / топлива, необходимые для соответствия новым требованиям к выбросам. Для компенсации компьютер регулирует топливную смесь, добавляя больше топлива, когда смесь бедная, или используя меньше топлива, когда она богатая. Это основы управления подачей топлива с обратной связью (, рис. 2, ).

Рисунок 2

Я составил серию запланированных шагов, которые помогут мне продвинуться в моем понимании этого датчика.Я выложил шаги так:

Шаг 1: Работа и описание

Шаг 2. Просмотрите схему подключения (спецификации подстроечного резистора)

Шаг 3: Анализ данных сканирования

Шаг 4: Таблица напряжения и тока

Шаг 1. Работа и описание

Мне нужно было понять, как работает этот датчик. Вот описание, которое было доступно со ссылкой на служебную информацию.

Датчик A / F 1 представляет собой планарный двухэлементный датчик предельного тока.Чувствительный элемент датчика A / F 1 представляет собой комбинацию ячейки концентрации Нернста (ячейки датчика) с ячейкой насоса кислорода, которая транспортирует ионы кислорода. Он имеет нагреватель в элементе. Датчик способен точно измерять лямбда = 1, но также и в обедненном, и в богатом диапазоне. Вместе с управляющей электроникой датчик выдает четкий непрерывный сигнал в широком диапазоне лямбда (0,7

Компоненты выхлопных газов диффундируют через диффузионный зазор у электрода кислородного насоса и концентрационной ячейки Нернста, где они приводятся в термодинамическое равновесие.

На первый взгляд это дало мне очень мало понимания, мне нужны были определенные термины, чтобы облегчить мое понимание.

Обычный планарный датчик O2S (узкополосный)

Однокамерный датчик AFR

: однокамерный датчик O2 похож на узкополосный четырехпроводной датчик, но может быть либо плоской конструкции, либо чашечного типа (наперсток). Четыре провода обозначают два для нагревателя и два для сигнала и работают при напряжении 0,4 В для датчика.

Планарный двухэлементный предельный датчик

: двухэлементные датчики AFR используют плоскую конструкцию с плоским элементом из диоксида циркония, размер которого составляет около 1.Толщина 5 мм. Планарный дизайн имеет несколько преимуществ по сравнению с однокамерным датчиком AFR из-за более короткого времени прогрева, более быстрого времени переключения и лучшей устойчивости к загрязнениям.

Концентрационная камера Нернста:

Конструктивно широкополосный датчик кислорода очень похож на обычный планарный датчик O2S в отношении области, обозначенной как ячейка Нернста. Ячейка Нернста для широкополосного датчика определяет кислород таким же образом, как и обычный датчик O2 с наконечником. Когда существует разница в уровнях кислорода на циркониевом сенсорном элементе, ток течет с одной стороны на другую и создает напряжение.Но это дает только общее показание богатой-бедной смеси воздух / топливо, цель состоит в том, чтобы поддерживать напряжение 0,45 В на элементе Нернста.

Насосная ячейка

(насосный ток): над концентрационной ячейкой Нернста находится еще один слой диоксида циркония с двумя электродами, который называется насосной ячейкой. Две ячейки имеют общую основу, которая называется эталоном. Есть две внутренние камеры; камера сравнения воздуха (открытая для окружающего воздуха) и диффузионный зазор или камера (открытая для выхлопных газов).

Когда выхлоп богатый, PCM подает отрицательный ток на насосный элемент.

Когда выхлоп бедный, PCM подает положительный ток на насосную ячейку.

Шаг 2. Просмотрите электрическую схему (Спецификация подстроечного резистора)

Теперь, когда я немного лучше понимаю устройство датчика и роль ячеек Nernst и Pump, пора перейти к шагу 2. Перед установкой нового датчика, возможно, неплохо проверить сопротивление трима. резистор, Bosch указывает диапазон 30-300 Ом ( рис. 3, 4 ).Однако важно отметить, что сопротивление подстроечного резистора на любых двух датчиках может не совпадать, но все же находится в пределах технических характеристик.

Рисунок 3
Рисунок 4

Контрольные точки (омметр) для проверки калибровки подстроечного резистора показаны на рис. 5 , крышка снята.(30-300 Ом)

Рисунок 5
Рисунок 6

Схема подключения на Рис. 6 типична для того, что вы можете видеть в служебной информации, обратите внимание, что на схеме показано шесть проводов. Всего на стороне ECM цепи будет шесть проводов, но только пять проводов на самом широком датчике кислорода Bosch.Если вы внимательно посмотрите на электрическую схему Bosch выше и проследите за схемой подстроечного резистора, это даст некоторое представление.

После тщательного изучения и некоторой домашней работы я смог получить информацию о значении обозначений, перечисленных на электрической схеме. Это было очень важно для понимания того, какая информация о напряжении присутствует на каждой клемме.

AF-h2 — Управление нагревателем

A / F IA1 — Насосная ячейка через регулировочный резистор

AF-VM1 — Ссылка (общая) 2.5 Вольт над массой PCM

AF-UN1 — напряжение ячейки Нернста (450 мВ при измерении от AF-UN1 до AF-VM1 — также передает ток для накачиваемого эталона)

AF-IP1 — насосная ячейка

Цепь предохранителя — питание нагревателя к датчику от батареи

Шаг 3. Анализ данных сканирования

Эта информация от Nissan подразумевает, что мы должны увидеть около 1,5 вольт (производимое напряжение PCM) на сканере KOEO; Рисунки 7,8 и 9 подтверждают это.Nissan использует концепт под названием Alpha (коррекция). Вот как интерпретировать Альфа:

Альфа = 100 (коррекция не требуется)

Alpha> 100 (PCM добавляет топливо, поскольку считает, что двигатель обедненный)

Альфа

Рисунок 7
Рисунок 8
Рисунок 9

Шаг 4: Тестирование кислородного датчика (таблица напряжения и тока)

Рисунок 10

Эта информация от Nissan не предоставляет информацию о терминалах, как показано Рисунок 10 , и это несколько затрудняет понимание с точки зрения диагностики.Я сделал несколько важных примечаний, чтобы помочь понять, какое напряжение увидит технический специалист на этих отмеченных клеммах. Я обнаружил, что использование рабочего листа помогает при сборе данных. Измерения производятся от указанной клеммы до отрицательного полюса аккумулятора (, рисунок 11, ). (Обратите внимание, что цвета проводов для этих датчиков могут и будут различаться)

Таблица широкополосного датчика соотношения A / F Bosch (5-проводной)

Рисунок 11

На рисунках 12 и 13 показаны напряжение и ток нагревательного элемента кислородного датчика, пик уровня напряжения — 11.6 вольт и пиковый ток 1,2 ампер. Хороший чистый переход с точки зрения широтно-импульсной модуляции.

Рисунок 12
Рисунок 13

На рисунке 13 показано измерение тока для тока накачки (миллиампер). Я использую зонд с малой силой тока, который может измерять эти малые токи. Когда был добавлен пропан, ток стал отрицательным, а когда пропан был удален, ток стал положительным.Это был отличный пример работающего датчика. Это мой четырехэтапный процесс для 5-проводных датчиков Bosch, я применяю тот же процесс к их 4-проводной конструкции.

Рисунок 14
Рисунок 15

Рисунок 14 относится к 4-проводной конструкции датчика, я также применяю 4-этапный процесс для этой конструкции. Моим исследуемым автомобилем был Nissan Altima 2015 года выпуска.

Шаг 1. Работа и описание

Мне нужно было понять, как работает этот датчик (, рис. 15, ). Вот описание, которое было доступно со ссылкой на служебную информацию:

Чувствительным элементом датчика A / F 1 является электродный слой, переносящий ионы кислорода. Он имеет нагреватель в элементе. Датчик способен точно измерять лямбда = 1, но также в обедненном и богатом диапазонах. Вместе с управляющей электроникой датчик выдает четкий непрерывный сигнал в широком диапазоне лямбда.

Я не смог понять, как работает датчик, на основании этого утверждения.

Шаг 2. Просмотрите электрическую схему

На рисунке 15 показано, что у этого датчика есть 4 провода. Клеммы были указаны как Датчик A / F 1, Датчик A / F 1, Датчик A / F Htr и Датчик A / F Htr. Способ маркировки датчика также сбивал с толку, поэтому я провел измерения с помощью DVOM и записал их на свой рабочий лист.

Шаг 3. Анализ данных сканирования

T he A / F sen1 (b1) Напряжение ПИД должно колебаться около 2.2 вольта, если топливная смесь правильная. Более высокое напряжение выше 2,2 В указывает на обедненную смесь, а более низкое напряжение ниже 2,2 В указывает на обогащение (, рисунки 16, 17, ).

Nissan использует концепцию под названием Alpha (коррекция). Вот как интерпретировать Alpha:

Альфа = 100 (коррекция не требуется)

Alpha> 100 (PCM добавляет топливо, поскольку считает, что двигатель обедненный)

Альфа

Рисунок 16
Рисунок 17

Шаг 4: Тестирование кислородного датчика (таблица напряжения и тока)

Рабочий лист широкополосного датчика соотношения A / F от Bosch (4-проводный)

Для этой 4-проводной схемы было очень мало информации ( Рисунок 18 ), но есть наблюдения, которые стоит отметить:

Рисунок 18

Контакт 1 выглядит как 2.От 5 до 2,6 В над землей PCM

Контакт 2 имеет напряжение 2,2 В (разница напряжений между контактами 1 и 2 составляет примерно от 0,42 до 0,45 В)

Контакт 3 — это схема с широтно-импульсной модуляцией (управление нагревательным элементом)

Контакт 4 — питание от батареи к нагревательному элементу

Надеюсь, вы найдете эту информацию полезной в вашем путешествии с 4- и 5-проводными датчиками A / F на продукции Nissan.

Тестирование кислородных датчиков — General Technologies Corp.

Типы датчиков кислорода

На транспортных средствах есть несколько распространенных типов кислородных датчиков, которые имеют от одного до пяти проводов, соединяющих их с остальной частью транспортного средства.Вы должны определить, с каким типом кислородного датчика вы работаете, прежде чем пытаться провести какой-либо тест:

  • Датчики из диоксида циркония, также известные как «узкополосные датчики кислорода», являются наиболее распространенным типом. Датчики из диоксида циркония имеют два электрода, которые выдают 200 мВ (0,2 В) в «обедненном» состоянии и 800 мВ (0,8 В) в богатом состоянии. В нормально работающем двигателе циркониевые датчики обычно выдают 450 мВ (0,45 В).
  • Широкополосные датчики из диоксида циркония, часто называемые просто «широкополосными датчиками», также довольно распространены.Широкополосные датчики имеют четыре электронных соединения, одна пара из которых является их выходным сигналом.
  • Датчики из титана, которые представляют собой тип узкополосных датчиков, которые встречаются редко, но не редкость. Существует два типа датчиков Titania, один из которых работает в полном диапазоне 5 вольт, а другой — при 1 вольт.

Расположение датчика кислорода

Датчики кислорода обычно расположены в одном из двух мест (вдоль выхлопной трубы двигателя), и важно знать, с чем вы имеете дело.Позиции:

Датчики кислорода перед каталитическим нейтрализатором обычно выдают сигнал, который варьируется от «обедненного» до «богатого» (или высокого и низкого). В

Датчики кислорода после каталитического нейтрализатора обычно имеют плавный выходной сигнал, поскольку каталитический нейтрализатор смешивает оставшиеся несгоревшие выхлопные газы и реагирует на кислород с топливом.

Тесты датчика кислорода

«Тестирование кислородного датчика» может означать много разных вещей. Наиболее распространенные тесты:

  • Тесты нагревателя датчика кислорода. Обычно это проверка сопротивления нагревательного элемента или потребляемой мощности с помощью мультиметра или токоизмерительных клещей.
  • Проверка уровня среднего выходного сигнала кислородного датчика. Это тест среднего выходного сигнала датчика, выполненный с помощью мультиметра.
  • Проверка количества пересечений кислородного датчика. Это проверка поведения кислородного датчика на работающем двигателе, выполняемая с помощью осциллографа или тестера / симулятора кислородного датчика ST05.
  • Тесты отклика кислородного датчика. Они сильно различаются, но обычно выполняются с помощью пропановой горелки (или другого источника тепла) и какого-либо измерительного устройства (например, мультиметра или тестера / симулятора датчика кислорода ST05).
  • Проверка отклика датчика кислорода Комиссией по воздушным ресурсам Калифорнии. Это специальный тест (описанный ниже), который никогда не получил широкого распространения.

Тест датчика кислорода в Калифорнии

В 1990-х Совет по воздушным ресурсам Калифорнии ввел стандарт для тестирования автомобильных датчиков кислорода. Чтобы пройти этот тест, датчик кислорода должен перейти из состояния «низкий» в «высокий» менее чем за 100 мс, когда двигатель прогрет и работает со скоростью 1800 об / мин.

По разным причинам тест никогда не получил широкого распространения в автомобильной промышленности, поэтому большинство кислородных датчиков не проходят тест, даже если они совершенно новые и функционируют должным образом.Вы не должны полагаться на тест, если производитель кислородного датчика явно не заявляет, что его устройство соответствует требованиям теста, проведенного в Калифорнии.

Как проверить датчик кислорода с помощью мультиметра

Самый простой способ проверить кислородный датчик с помощью (цифрового) мультиметра — проверить, не сломан ли нагревательный элемент (при условии, что рассматриваемый датчик самонагревается). Вы можете проверить нагревательный элемент кислородного датчика,

  1. Включение мультиметра в режим «сопротивление».
  2. Подключите измерительные провода к контактам или проводам разъема питания и заземления нагревателя.
  3. Считайте показания мультиметра, большинство этих нагревателей имеют внутреннее сопротивление примерно от 10 Ом до 20 Ом (в холодном состоянии).

Следующий тест, который вы можете провести с самонагревающимся кислородным датчиком, — это проверить, запитан ли его нагревательный элемент. Чтобы сделать этот тест:

  1. Убедитесь, что выхлопная система двигателя холодная. Некоторые обогреватели не включаются, если выхлопные трубы двигателя горячие.
  2. Включите мультиметр в режим «Напряжение постоянного тока».
  3. Подключите мультиметр к проводам или контактам питания нагревателя.Обратные щупы — лучший инструмент для этого. Если у вас нет доступа к задним зондам, проще всего подключить мультиметр к линиям электропередач, отсоединив кислородный датчик от его жгута и подключив мультиметр к разъему. Вы должны прочитать руководство по обслуживанию двигателя, чтобы узнать, что здесь можно и чего нельзя делать.
  4. Включите двигатель.
  5. Обратите внимание на показание напряжения на мультиметре, оно должно быть в пределах от 12 В до 14 В.

Если вы работаете с широкополосным датчиком из диоксида циркония, вы также можете попытаться проверить его среднее выходное напряжение, которое обычно должно быть около 450 мВ и стабильно, когда двигатель работает и прогрет.Узкополосные датчики (диоксид циркония и диоксид титана), особенно прекаталитический нейтрализатор, сложно тестировать с помощью мультиметра. Мультиметры не реагируют достаточно быстро, чтобы уловить быстро меняющийся выходной сигнал узкополосного датчика.

Как проверить датчик кислорода с помощью токоизмерительных клещей

Токоизмерительные клещи значительно ускоряют и упрощают проверку самонагрева кислородного датчика. Все, что вам нужно сделать, это:

  1. Убедитесь, что выхлопная система двигателя холодная.
  2. Включите токоизмерительные клещи в режим «Постоянный ток / постоянный ток».
  3. Оберните зажим вокруг любого из проводов питания нагревателя кислородного датчика (но не обоих). Будьте осторожны, не кладите руку или инструмент на двигатель или выхлопную трубу
  4. Завести двигатель.
  5. Обратите внимание на показания, которые должны быть в пределах от 0,25 до 1,5 А.

Некоторые из преимуществ использования токоизмерительных клещей (по сравнению с обычным мультиметром) заключаются в том, что они работают быстрее, информативнее и менее навязчивы, поскольку не мешают нормальной работе двигателя.

Как проверить датчик кислорода с помощью осциллографа

Осциллографы — очень полезные инструменты, и они гораздо более информативны, чем мультиметры, но их также сложно использовать с датчиками кислорода. Обычно лучше использовать осциллограф с батарейным питанием или осциллограф с изолированными входами, поскольку автомобили могут не иметь общего заземления с электросетью в гараже или магазине. Если транспортное средство «плывет» выше или ниже напряжения источника питания осциллографа, он может разрядить значительный ток в несколько тысяч вольт, что приведет к повреждению электрических цепей автомобиля или осциллографа.Вторая проблема при использовании осциллографа для проверки датчиков кислорода — это фактическое подключение осциллографа к цепи (схемам) датчика кислорода, что лучше всего решается с помощью обратных пробников. Чтобы использовать осциллограф на датчике кислорода, вам необходимо:

  1. Убедитесь, что входы осциллографа должным образом изолированы от электросети гаража или магазина.
  2. Убедитесь, что двигатель холодный.
  3. Подключите щупы осциллографа к линиям ячеек датчика кислорода (обязательно используйте опорный / заземляющий зажим осциллографа).Убедитесь, что провода не будут мешать движущимся частям двигателя.
  4. Запустить двигатель
  5. Наблюдать за выходными сигналами кислородного датчика при работающем двигателе и с течением времени. Во время прогрева двигателя выходные сигналы датчика кислорода должны быть низкими, а затем повышаться до среднего значения, соответствующего «сбалансированной» смеси. Выходные сигналы датчика предкаталитического нейтрализатора обычно должны быстро колебаться между «богатым» и «бедным». Выходы после каталитического нейтрализатора должны быть намного более стабильными, около «сбалансированного» уровня.Количество раз, когда сигнал пересекает свое среднее значение, является важным параметром, и каждая система (ECM / PCM, двигатель и датчик кислорода) имеет характерное количество пересечений в секунду.
  6. Заглушить двигатель.
  7. Подождите, пока двигатель остынет.
  8. Снимите щупы осциллографа.

Тестирование с помощью тестера датчика кислорода ST05

Наш собственный тестер / симулятор датчика кислорода ST05, вероятно, является лучшим и самым простым в использовании инструментом для проверки датчиков кислорода.ST05 не повредит кислородные датчики и поставляется со специальными зажимами, которые можно прикрепить к оголенному металлу или использовать для протыкания сигнальных проводов (где это допустимо).

  1. Убедитесь, что двигатель холодный.
  2. Подключите измерительные провода ST05 к выходам кислородного датчика. ST05 сообщит вам (через буквенно-цифровой дисплей с правой стороны), если он обнаружит неправильное подключение, например отсутствие подключений, подключение к проводам нагревателя или неправильную полярность.
  3. Включите двигатель.
  4. Наблюдайте за дисплеями ST05, когда двигатель прогревается и с течением времени. Выходной сигнал кислородного датчика (отображается на левой панели ST05) обычно должен начинаться с низкого уровня и повышаться по мере нагревания. Когда двигатель прогрет, вы можете увидеть «счетчик пересечений» на правом дисплее. Количество раз, когда сигнал пересекает свое среднее значение, является важным параметром, и каждая система (ECM / PCM, двигатель и датчик кислорода) имеет характерное количество пересечений в секунду. Выходные сигналы датчика предкаталитического нейтрализатора обычно должны быстро колебаться между «богатым» и «бедным».Выходы после каталитического нейтрализатора должны быть намного более стабильными, около «сбалансированного» уровня.
  5. Заглушить двигатель.
  6. Подождите, пока двигатель остынет.
  7. Снимите испытательные провода ST05.

Таким образом, ST05 может предоставить вам примерно столько же информации о кислородном датчике на работающем двигателе, сколько и осциллограф, при этом он дешевле и намного проще в использовании.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *